#### SIMUL 24, Venice Predictive AI To Feed Simulation

Carlo Simon, Stefan Haag and Natan Georgievic Badurasvili Simon, haag, natan.badurasvili}@hs-worms.de











### It started with my inability ...

... to reply directly to a simple statement:

Your simulation does not help me to predict how my customers will behave next week.

Obviously, this is true!

Have I overseen a real business need? And what could have been a good reply to this statement?

Let me tell the story from the beginning!





#### Simulation of a Real World Case Study



(Infraserv Logistics GmbH, 2023)



Simon · Haag · Badurasvili

Predictive AI to Feed Simulation



## **Our Real World Case Study**

#### **Key Facts**

- Space for more than 21,000 pallets
- 9 separate warehouse sections
- Storage of multiple LGK storage classes
- A wide temperature range from -6 to 20 degrees Celsius

(Infraserv Logistics GmbH, 2023)

#### Employees may simulate process variants

by changing processing times and resources and
for different sets of "simplified" orders.

#### A dashboard may

visualize the processes as they occur and give different overviews.



### Process-Simulation.Center (P-S.C) & Dashboard

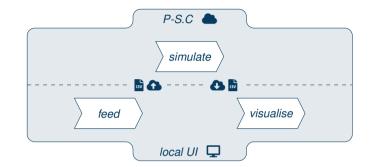
#### Process-Simulation.Center (P-S.C)

- Petri net based Integrated Management System (IMS)
- nearly 500 registered, almost academic users
- Uses high-level Petri-Nets as a universal modeling and simulation language for dynamic systems
- Simulation of processes controlled by limiting resources

#### Dashboard

- Dashboard app especially developed for the business partner
  - Administration of master file data
    - Visualizes the process flow in the course of a day

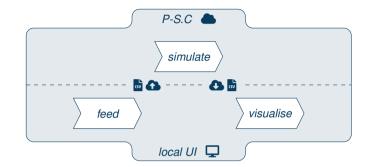





# Shift from Real World to Digital World

- The following **steps** have been conducted:
- Identify the process to transfer pallets into and out of the stock.
- Specify the data necessary to control this process.
- 3 Develop a data driven model for the process.
- 4 Develop a user interface to administrate the simulation input data.
- 5 Develop a user interface to visualize the simulation results.

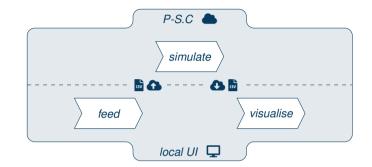



# Shift from Real World to Digital World



Phase *feed*: Master file data management on resources, times, and orders. Data is supplied in CSV format.




# Shift from Real World to Digital World



Phase *simulate*: **P-S.C** simulation of the warehouse movements on the base of this data.



# Shift from Real World to Digital World



Phase *visualize*: The exported simulation results are loaded up to the **Warehouse-Dashboard** for visualization.





# A first impression



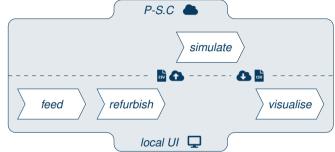


#### Predictive AI to Feed Simulation



#### Outcomes that have been identified!

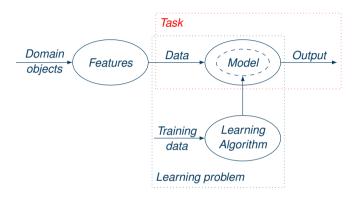
#### What we achieved


- We could explain thresholds of the last week.
- We could establish schedules for the future hardened for expected changes.

#### What we failed at

- But we cannot foresee which changes can be expected, automatically.
- And the practitioneer cannot, too.




# A new step



Phase refurbish: Can Predictive AI (and especially ML) help for this task?



### Machine Learning



(Flach, 2012)





1

### **Classification vs. Regression**

#### Definition

- In mathematical notation, a classifier is a function y = f(x), where x is the input data item and y is the output category:
- 2 In regression, we try to understand the data points by discovering the curve that might have generated them.

Application

- Classification could help to predict which transports may be unpunctual.
- 2 **Regression** could help to predict how many minutes transports may be unpunctual.

derived from (Mattmann, 2020)



#### **Assumption and Prerequisites**

#### Assumption

There are **reasons** for being late. They might be unknown to the customer, but their existence can be derived from patterns in past data.

#### Prerequisites

- We need a system to find the patterns in the past and to apply it to future data.
- We need to collect the **relevant** past data, i.e. data that includes these patterns.

#### **Examples**

- Are there shipping agents that often are late?
- Are there producers that always are early?
- Are midweek deliveries more reliable than ones on Mondays?





# **Prototypical Implementation**

#### Sometimes, one book is all you need!

- **NumPy** provides data types and functions for easier handling of complex structures, such as vectors and matrices.
- **pandas** is designed for more complex structures and their easy handling. One strength is its extensive functionality for table structures.
- Matplotlib is used for visual analyses and plotting.
- **scikit-learn** contains many ML algorithms that can be easily used in your own program.
- **Keras** can build artificial neural networks.
- **TensorFlow** extends Keras with additional well performing functionalities and can handle large and complex data structures.

(Karatas, 2024)



### Given, Useless, and Needed Order Data

| Attribute    | Description                          |
|--------------|--------------------------------------|
| id           | order id                             |
| product      | product group chem or pharma         |
| total        | total amount of pallets requested    |
| status       | initial or current order status      |
| ramp         | target ramp                          |
| arrival      | scheduled time of arrival            |
| preparation  | scheduled time of completed staging  |
| fillHandover | amount of pallets in handover areas  |
| fillRamp     | amount of pallets at target ramp     |
| fillTruck    | amount of pallets in truck           |
| usedGate     | used resource gate                   |
| usedSGS      | used resource SGS                    |
| usedVHS      | used resource VHS                    |
| timestamp    | timestamp of the latest state change |

Predictive AI to Feed Simulation

### Given, Useless, and Needed Order Data

| Attribute    | Description                          |
|--------------|--------------------------------------|
| id           | order id                             |
| product      | product group chem or pharma         |
| total        | total amount of pallets requested    |
| status       | initial or current order status      |
| ramp         | target ramp                          |
| arrival      | scheduled time of arrival            |
| preparation  | scheduled time of completed staging  |
| fillHandover | amount of pallets in handover areas  |
| fillRamp     | amount of pallets at target ramp     |
| fillTruck    | amount of pallets in truck           |
| usedGate     | used resource gate                   |
| usedSGS      | used resource SGS                    |
| usedVHS      | used resource VHS                    |
| timestamp    | timestamp of the latest state change |

Simon · Haag · Badurasvili

Predictive AI to Feed Simulation

#### Given, Useless, and Needed Order Data

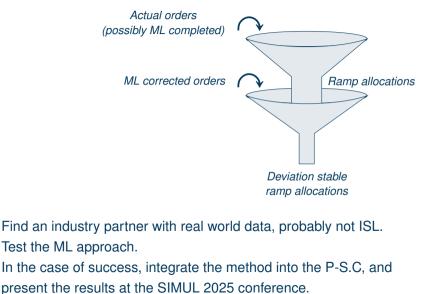
| Attribute | Description                       |
|-----------|-----------------------------------|
| total     | total amount of pallets requested |
| status    | initial or current order status   |
| arrival   | scheduled time of arrival         |



### Given, Useless, and Needed Order Data

| Attribute | Description                           |
|-----------|---------------------------------------|
| total     | total amount of pallets requested     |
| status    | status (inbound or outbound)          |
| arrival   | scheduled time of arrival (broken up) |
| delay     | actual arrival time or delay          |
| distance* | inside or outside the industry park   |
| agent     | shipping agent                        |
| producer  | of the good                           |

\* might be difficult to know in advance




Simon · Haag · Badurasvili

# T

Hachschule

# Outlook on how to apply this!





#### Feel free to contact us!

.... check out our website Group for Applied Processsimulation (GAPS)

https://www.hs-worms.de/en/gaps/



... and reach of for any kind of project, whether its in teaching or another real world.



Flach, Peter (2012): Machine Learning - The Art and Science of Algorithms that Make Sense of Data. Cambridge University Press, Cambridge, 9. Aufl. Infraserv Logistics GmbH (2023): Overview hazardous substances warehouse. https://www.infraserv-logistics.com/en/isl/news/news/ (last accessed 15.08.2023).

Karatas, M. (2024): Development of AI applications (in German: Eigene KI-Anwendungen programmieren). Rheinwerk Computing, Bonn.

Mattmann, C., Hg. (2020): Machine Learning with TensorFlow. Manning, Shelter Island, NY, 2. Aufl.

