
On Reducibility of Developer-Written 

Unit Tests in C#

Authors: Arpit Christi, David Weber

Presenter: Arpit Christi, School of Computing, Weber 
State University

Email: arpitchristi@weber.edu



Author Bio

Arpit Christi

• Assistant Professor at Weber 
State University

• PhD Computer Science – Oregon 
State University

• Research Interests – Program 
Debugging, Self Adaptive 
Software, Software Testing

David Weber

• Embedded Software Engineer at 
Northrop Grumman

• MS Computer Science – Weber 
State University

• Research Interests – Adaptive 
Programming, High Performance 
Computing, Embedded Systems



Introduction

• Program Debugging and Test Case Reduction

• Background and Motivation

• Reduction Process and Outcome

• Experiments and Results

• Conclusion and Future Work



Program Debugging

• Debugging is difficult and time consuming.

• Developer time is spent on locating the fault.

• Test case reduction is useful.

• Reduces the test while keeping failure-inducing input. [1]

• Entities not important to inducing the failure are removed.

• Keep developer focus on faulty aspects of the program.

• Test reduction improves Automatic Fault Localization [2,3]



Background and Motivation

• Delta Debugging [1]

– Test reduction for flat, array or list like structures

• Hierarchical Delta Debugging [4]

– Test reduction for hierarchical and tree like structures

• Modern Tools, Techniques and Algorithms

– Mostly use DD, HDD algorithms

– Slow algorithms: DD (O(n2)), HDD (O(n3))

– All elements are processed indiscriminately

– No priority is assigned to an element based on category

– What are the elements?: Can ne characters, words, lines of a test



Tests written as program and Abstract 
Syntax Tree

• Considering characters or words or lines of a program as reduction unit can produce non 
compilable results

• Nodes are the reduction units or elements – reduces the possibility of non compilable test
• Only statement level nodes are considered for reduction



Reduction Process and Outcome

• Outcome • Reduced entities

• Three statements are 
reduced

• One IfStmt

• Two other statements

– Int sum2 = m.Add(-2,-3)

– Assert.Equal(sum2,-5)



Categorizing statements

• Based on the location of a statement within the AST

• Previously researchers found heuristics on program reduction 
based on similar categorization [6]

• Tree Statement – A statement that has one or more statement 
nodes below it. 

• NonTree Statement – A statement that has no statement node 
below it. 



Research Questions

• RQ1: What kind of statements are reduced 
and in what numbers? Based on the category. 

• RQ2: What is the probability of a reduction of 
a statement based on the category?



Experiment - Subjects

• 30 real-world bugs across five open-source 
projects, each bug has a failing test [5]

• Process 759 statements for failing tests

• 732 non tree statements and 27 tree 
statements

• Each test is reduced using ReduSharptor [5]

• Are we reducing tests accurately?

– Redusharptor has 96% precision and 96% recall



Experiment - Measurement

• ARS (Absolute Reduction Size): The number of statements reduced. 

• PRS (Percentage Reduction Size): The percent of total statements 
reduced.

• ATRS (Absolute Tree Statement Reduction Size): The number of tree 
statements reduced.

• PTRS (Percent Tree Statement Reduction Size): The percentage of 
tree statements reduced.

• ANTRS and PNTRS: Same as ATRS and PTRS but for non tree 
statements. 

• Percentage numbers are more meaningful than absolute numbers.



Results: RQ1

• Non tree nodes are reduced in large numbers.
• Wilcoxon signed rank test on PNTRS vs PTRS: p value < 0.0005 and V=465
• The boxplot suggests that non tree nodes are reduced approximately 50 times more. 



Results: RQ2

• The number of tree statements are less in numbers than non tree statements. 

• PrNTRS: Probability of removal of a non tree statement (ANTRS / NTN) * 100

• PrTRS: Probabiity of removal of a tree statement (ATRS/TN) * 100

• Contains undefined results due to TN=0 for a few tests. Those results are neglected 
for further evaluations. 

• Wilcoxon Signed Rank Test on PrNTRS vs PrTRS: p-value < 0.05 and V= 99.
• Boxplot of PrNTRS and PrTRS suggests that probability of removal of a non tree 

statement is 1.7 times higher than that of tree statement



Conclusion and Future Work

• DD/HDD implementations don’t assign priority to an entity based on the 
category.

• We came up with broad generic category for tests written as program (1) 
Tree statement (2) Non tree statement.

• We study the effect of a statement category on reduction outcome and 
removal process.

• We conclude (1) non tree statements are removed in larger numbers (2) 
non tree statements have slightly higher chance of removal. 

• Extend the work for tests written in other programming languages.

• Extend the work by defining other categories. 

• Extend the work for test inputs not written as programs.



Refernces

[1] A. Zeller and R. Hildebrandt, “Simplifying and isolating failure-inducing

input,” IEEE Trans. Softw. Eng., vol. 28, no. 2, pp. 183–200, Feb. 2002.

[2] A. Christi, M. L. Olson, M. A. Alipour, and A. Groce, “Reduce beforeyou localize: Delta-
debugging and spectrum-based fault localization,” in 2018 IEEE International Symposium on 
Software Reliability Engineering Workshops, ISSRE Workshops, Memphis, TN, USA, October 15-
18,2018, pp. 184–191.

[3] D. Vince, R. Hodova´n, and A´ . Kiss, “Reduction-assisted fault localization: Don’t throw away 
the by-products!” in ICSOFT, 2021, pp. 196–206.

[4] G. Misherghi and Z. Su, “HDD: Hierarchical delta debugging,” in Proceedings of the 28th 
International Conference on Software Engineering, ser. ICSE ’06, 2006, pp. 142–151.

[5] D. Weber and A. Christi, “Redusharptor: A tool to simplify developer-written c# unit tests,” 
International Journal of Software Engineering & Applications, vol. 14, pp. 29–40, 09 2023.

[6] A. Christi and A. Groce, “Target selection for test-based resource adaptation,” in 2018 IEEE 
International Conference on Software Quality,Reliability and Security (QRS), July 2018, pp. 458–
469.


	Slide 1
	Slide 2: Author Bio
	Slide 3: Introduction
	Slide 4: Program Debugging
	Slide 5: Background and Motivation
	Slide 6: Tests written as program and Abstract Syntax Tree
	Slide 7: Reduction Process and Outcome
	Slide 8: Categorizing statements
	Slide 9: Research Questions
	Slide 10: Experiment - Subjects
	Slide 11: Experiment - Measurement
	Slide 12: Results: RQ1
	Slide 13: Results: RQ2
	Slide 14: Conclusion and Future Work
	Slide 15: Refernces

