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Program Debugging

• Debugging is difficult and time consuming.

• Developer time is spent on locating the fault.

• Test case reduction is useful.

• Reduces the test while keeping failure-inducing input. [1]

• Entities not important to inducing the failure are removed.

• Keep developer focus on faulty aspects of the program.

• Test reduction improves Automatic Fault Localization [2,3]



Background and Motivation

• Delta Debugging [1]

– Test reduction for flat, array or list like structures

• Hierarchical Delta Debugging [4]

– Test reduction for hierarchical and tree like structures

• Modern Tools, Techniques and Algorithms

– Mostly use DD, HDD algorithms

– Slow algorithms: DD (O(n2)), HDD (O(n3))

– All elements are processed indiscriminately

– No priority is assigned to an element based on category

– What are the elements?: Can ne characters, words, lines of a test



Tests written as program and Abstract 
Syntax Tree

• Considering characters or words or lines of a program as reduction unit can produce non 
compilable results

• Nodes are the reduction units or elements – reduces the possibility of non compilable test
• Only statement level nodes are considered for reduction



Reduction Process and Outcome

• Outcome • Reduced entities

• Three statements are 
reduced

• One IfStmt

• Two other statements

– Int sum2 = m.Add(-2,-3)

– Assert.Equal(sum2,-5)



Categorizing statements

• Based on the location of a statement within the AST

• Previously researchers found heuristics on program reduction 
based on similar categorization [6]

• Tree Statement – A statement that has one or more statement 
nodes below it. 

• NonTree Statement – A statement that has no statement node 
below it. 



Research Questions

• RQ1: What kind of statements are reduced 
and in what numbers? Based on the category. 

• RQ2: What is the probability of a reduction of 
a statement based on the category?



Experiment - Subjects

• 30 real-world bugs across five open-source 
projects, each bug has a failing test [5]

• Process 759 statements for failing tests

• 732 non tree statements and 27 tree 
statements

• Each test is reduced using ReduSharptor [5]

• Are we reducing tests accurately?

– Redusharptor has 96% precision and 96% recall



Experiment - Measurement

• ARS (Absolute Reduction Size): The number of statements reduced. 

• PRS (Percentage Reduction Size): The percent of total statements 
reduced.

• ATRS (Absolute Tree Statement Reduction Size): The number of tree 
statements reduced.

• PTRS (Percent Tree Statement Reduction Size): The percentage of 
tree statements reduced.

• ANTRS and PNTRS: Same as ATRS and PTRS but for non tree 
statements. 

• Percentage numbers are more meaningful than absolute numbers.



Results: RQ1

• Non tree nodes are reduced in large numbers.
• Wilcoxon signed rank test on PNTRS vs PTRS: p value < 0.0005 and V=465
• The boxplot suggests that non tree nodes are reduced approximately 50 times more. 



Results: RQ2

• The number of tree statements are less in numbers than non tree statements. 

• PrNTRS: Probability of removal of a non tree statement (ANTRS / NTN) * 100

• PrTRS: Probabiity of removal of a tree statement (ATRS/TN) * 100

• Contains undefined results due to TN=0 for a few tests. Those results are neglected 
for further evaluations. 

• Wilcoxon Signed Rank Test on PrNTRS vs PrTRS: p-value < 0.05 and V= 99.
• Boxplot of PrNTRS and PrTRS suggests that probability of removal of a non tree 

statement is 1.7 times higher than that of tree statement



Conclusion and Future Work

• DD/HDD implementations don’t assign priority to an entity based on the 
category.

• We came up with broad generic category for tests written as program (1) 
Tree statement (2) Non tree statement.

• We study the effect of a statement category on reduction outcome and 
removal process.

• We conclude (1) non tree statements are removed in larger numbers (2) 
non tree statements have slightly higher chance of removal. 

• Extend the work for tests written in other programming languages.

• Extend the work by defining other categories. 

• Extend the work for test inputs not written as programs.
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