Spectral Target Detection at Twilight

Robert Sundberg Spectral Sciences, Inc. Burlington, MA, USA Email: rob@spectral.com

SPACOMM 2024 Barcelona, Spain

26-30 May 2024

Presenter's Resume

- Dr. Robert L. Sundberg
- Experience at Spectral Sciences, Inc.
 - President Emeritus (2022-Present)
 - President (2011-2021)
 - Vice President of Technology (2002-2011)
 - Group Leader of Detection/Discrimination Group (1998-2002)
 - Principal Scientist (1988-1998)
- Education
 - Post Doctorial Position, Massachusetts Institute of Technology (1983-1985)
 - Ph.D. (Physical Chemistry), University of California, 1983
 - B.A. (Chemistry & Physics), Colby College, 1978

Research Interests

- Remote Sensing
 - Spectral Scene Simulation
 - High-fidelity 3D simulations
 - Real-time target simulations
 - Atmospheric Compensation of Spectral Data
 - Visible-SWIR
 - MWIR-LWIR
 - Target Detection Algorithm Development
- Rocket Plume Radiance Simulations
- Calibration of Spectral Sensors

Temperature Controlled Calibration Panels

Motivation for Study

- Improvements in Spectral Imager Technology is Allowing Data to be Acquired Under Twilight Illumination Conditions
- MCScene Spectral Scene Simulation Tool can Simulate Scenes with the Sun Below the Horizon
 - Photons reaching the sensor from the ground must scatter in the atmosphere
- Investigate Target Detection Under Twilight Lighting Conditions

Setting Sun Over Fort Collins, CO, USA

Presentation Outline

- Motivation
- Overview of the MCScene Simulation Tool
- Examine Target Detection Under Twilight Illumination
- Summary

MCScene Simulation Tool

- UV through LWIR 3D radiative transport
- 3D atmospheres with clouds, 3D surfaces and object insertion
- Molecular absorption, Rayleigh scattering, aerosol absorption and scattering, multiple scattering and adjacency effects
- **MODTRAN**[®] optical properties, profiles, and spectroscopy
- Land and water surfaces, 3D terrain and objects, scattering by and transmission through clouds

MCScene Reflective Domain Approach

- Direct sun-ground-sensor term calculated explicitly
- Backward simulation ensures all photons hit the sensor
- Integrate thru 3D world in small steps
- Sample probability distributions for distance traveled and atmospheric and surface scattering directions
- Generates hyperspectral imagery

Monte Carlo Approach

Example Simulation of Visibility

- Davis CA scene
 - Reflectance from HYMAP data
 - 121 spectral bands
 - 2.75 m GSD
- Sensor altitude
 - 50 km

Spectral

Sciences Inc.

- nadir view
- 45 deg solar zenith angle
- Uniform atmosphere
 - Mid-latitude summer
 - Rural aerosol
- Reflectance outside of scene is assigned the in-band average

Example Simulation of Visibility

- Davis CA scene
 - Reflectance from HYMAP data
 - 121 spectral bands
 - 2.75 m GSD
- Sensor altitude
 - 50 km

Spectral Sciences Inc.

- nadir view
- 45 deg solar zenith angle
- Uniform atmosphere
 - Mid-latitude summer
 - Rural aerosol
- Reflectance outside of scene is assigned the in-band average

Topological Shadows Shadows Cast by Scene DEM

Varying Solar Azimuth Angle

- Virgin Mts. USGS 10 m DEM
- Uniform Unit Reflectance
- 30 deg solar zenith angle
- 20 km sensor altitude

Embedded Power Plant

Topographic Shadows

- Simplified Topographic Simulation Scenario
 - Tall mountain placed to the west of RIT Blind-Test data
 - Vary solar zenith angle
 - Overhead to 90° (twilight)
 - Scene fully shadowed by 75°

30° Solar Zenith

60° Solar Zenith

Linear Stretch on RGB Images

Presentation Outline

- Motivation
- Overview of the MCScene Simulation Tool
- Examine Target Detection Under Twilight Illumination
- Summary

Sciences Inc.

Data Used In Study

- RIT Target Detection Blind Test
 - Cooke City, MT
 - Collected on July 4, 2006
 - 3 m GSD
 - HyMap 128 bands
 - Visible to SWIR

True Color Image

E. Ientilucci & S. Adler-Golden, IEEE Geosci. Remote Sens. Mag., vol. 7, no. 2, pp. 31-50, 2019

- AVIRIS Boreal region in Saskatchewan, Canada
 - Collected 1994
 - 20 m GSD
 - 256 bands resampled to 128 bands
 - Visible to SWIR

Simulated RIT Blind-Test Scenes

Sensor at 20 km Altitude

Spectral Sciences Inc.

Spectral Sciences Inc.

Target Detection Approach

- Randomly Embedded Target Pixels in Reflectance Scene as Subpixel Targets
 - Blue roof target in RIT scene
 - 400 targets
 - 2% to 10% fill factor
 - Such low fill factors because the target is so spectrally different than most of scene
- Use MCScene to Produce Radiance Scene
 - Move sun from overhead to twilight (below the horizon)
- Atmospheric Compensation from Radiance to Reflectance with QUAC
 - In-scene atmospheric compensation
 - Determines average scene radiance based on automatically selected scene endmembers
- Target Detection Adaptive Covariance Estimator (ACE)
 - Compares whitened target spectrum with each whitened pixel spectrum

Target Detection Results

MCScene Results on Blue Roof Target

Sciences Inc.

- Target Detection Performance Degrades
 with Lower Solar Illumination
- Scenes with Mixtures of Shadow and Sunlit Areas Generally have Poorer Detection Performance
 - Processing sunlit & shadowed regions separately can improve detection performance
- Twilight Scene can Still Produce Reasonable Detection Performance
 - Radiance signatures are 10⁶ times smaller
 - Noise of sensor becomes dominant effect

Simulated Boreal Scenes

Sensor at 20 km Altitude

45° Solar Zenith

Twilight (90° Solar Zenith)

Target Detection Results

MCScene Results on Blue Roof Target

- Target Detection Performance
 Degrades with Lower Solar
 Illumination
- Twilight Scene can Still Produce Reasonable Detection Performance
- Scene with More Haze Produced Better Detection Performance
 - Additional scattering increased the number of photons reaching the ground
 - 23 km visibility in hazy scene

Presentation Outline

- Motivation
- Overview of the MCScene Simulation Tool
- Examine Target Detection Under Twilight Illumination
- Summary

Spectral Sciences Inc.

Summary and Future Work

- MCScene Simulations of Twilight Illuminated Scenes
 - Sun can be placed below the horizon
 - Investigated the influence of illumination effects on target detection after atmospheric compensation
- Radiance Scene Converted to Reflectance using QUAC
 - Detection is done in reflectance space
- Detection Performance Generally Reduced with Reduced Illumination
- Surprisingly, Good Target Detection in Twilight Conditions
 - Sensor noise may limit the performance
- Improved Detection Results When Haze in the Atmosphere is Sufficient to Induce a Few Scattering Events
- Future Work
 - Investigate sensitivity of twilight illuminated target detection to target signatures

Acknowledgment

- Spectral Sciences, Inc. for IRAD funding for paper preparation and presentation
- Drs. Steven Richtsmeier and Alexander Berk and Mr. Tim Perkins of Spectral Sciences, Inc. for many helpful discussions

Detection Algorithms

- Adaptive Coherence Estimator (ACE) Detector
 - Single spectrum for target
 - Can be used for tracking if spectral shape is nearly constant
 - ACE detector: $\mathbf{r} = [\mathbf{x}^{\mathsf{T}}\mathbf{x} / (\mathbf{x}^{\mathsf{T}}\mathbf{x} \mathbf{x}^{\mathsf{T}}\mathbf{s}(\mathbf{s}^{\mathsf{T}}\mathbf{s})^{-1}\mathbf{s}^{\mathsf{T}}\mathbf{x})]^{1/2}$
 - Whitened target spectrum, s
 - Whitened pixel spectrum, x
 - $\mathbf{r} = \csc(\theta)$
 - $\theta \rightarrow$ angle between **s** & **x**
 - Generalized likelihood ratio statistic

