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MOTIVATION AND INSPIRATION

• Machine Learning Challenges:

• Replicating ideal behavior for tasks.

• Complex behaviors with fast response.

• Real-time learning.

• Animals exhibit instinctive behaviors

based on their needs:

• Attraction to food.

• Repulsion from predators.

• Pursuit of prey.

• Evasion.



MOTIVATION AND INSPIRATION

• Simulating animal behavior in
virtual environments provides a
unique opportunity to design
agent-based systems that mimic
real-world dynamics.

• These physical rules are useful
not only for controlling agents but
also for optimizing strategies
through machine learning,
improving decision-making in
dynamic environments.

Games

Real World



OBJECTIVES

• Introduce a machine learning algorithm based on

attraction/repulsion using the Unscented Kalman Filter (UKF) to

predict and learn opponent behavior in real-time.

• Show the algorithm's effectiveness in dynamic environments,

outperforming traditional Q-learning methods, particularly in low-

frame conditions.

• Provide a framework for enhancing predictions and facilitating

learning in complex, real-world scenarios.



PROBLEM STATEMENT

• Low-Frame Environment Challenges:
• The low-frame environments, these methods often suffer from reduced

accuracy and performance, as they struggle to predict opponent behavior
efficiently.

• Need for Improved Approach:
• There is a clear need for an approach that can combine learning with

predictive modeling to optimize both movement and decision-making in real
time.

• Parameter Tweaking Issues:
• The existing techniques for simulating agent behaviors often involve

significant parameter tweaking, limiting their practical application in real-
world scenarios.



PROPOSED SOLUTION

• Dynamic Learning:
• This approach allows agents to learn from their

environment, adjusting attraction and repulsion parameters
to optimize their strategies dynamically.

• Enhanced Predictions:
• The combination of attraction rules with machine learning

enables more robust predictions and learning processes
compared to traditional methods like Q-learning.



MATERIALS AND METHODS

• Atari Emulator provided by OPENAI:

• Allows the use of games by accessing

inputs (buttons) and analyzing the screen

output.

• Enables the simulation of specific

scenarios.

• Provides memory access for reading and

writing data for modifications.



• Discrete Kalman Filter (DKF):

• Can estimate hidden states, such as

velocity and acceleration.

• Helps eliminate data noise, such as false

position measurements.
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• Extended Kalman Filter (EKF):

• An extension that uses partial derivatives

to handle nonlinearities.

• When combined with artificial neural

networks (ANN), it allows for better state

estimation.

• Can be used to enable an ANN to learn in

real-time.
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• Unscented Kalman Filter (UKF):

• A filter used for nonlinear systems.

• It includes an improvement with sigma

points for better mapping of the intrinsic

variances of the states.
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ATTRACTION-BASED MODEL

• Model based on attraction and repulsion

techniques:

• The player's fighter is attracted to the

CPU-controlled fighter.

• The fighter experiences repulsion from

the opponent's glove.

• At a certain distance from the player's

gloves and the CPU's head, the player

throws a punch.

Player_pos=Attraction(Player_pos,CPU_pos,K_1);

Player_pos=Attraction(Player_pos,CPU_G_R_pos,-K_2);

Player_pos=Attraction(Player_pos,CPU_G_L_pos,-K_2);



ATTRACTION-BASED LEARNING

• Learns the degrees of repulsion and

attraction between certain sprite positions

using the DKF and UKF.

• It is done in real-time.

• The reaction time starts from the moment

the coefficient values are assigned.



ATTRACTION-BASED REINFORCEMENT
LEARNING:

• We perform a linear prediction of the

future position of the sprites using the

DKF.

• We use attraction-based learning to

better determine the sprites' positions in

future steps.

• The learning process is enhanced by

adding an objective through rewards.
UKF

DKF Q-Learning



NOT TOO DEEP
Q-LEARNING
USING EKF

• We use the EKF to train the neural network

in real-time.

• It replaces the heavy processing used in

Deep Q-Learning by already having the

sprites' positions.

• The neural network has fewer neurons and

fewer layers, making it less complex.

• This allows training with the lowest possible

error.
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RESULTS

Algorithms Score
Remaining

Time
Total

Rewards

Programmed KO x 74 34 s 45,422

UKF 79 x 78 0 s 27,670

Q-learning KO x 97 3 s 33,361

EKF + RN 24 x 58 0 s -18,241

UKF + Q-learning 95 x 96 0 s 30,871

UKF + EKF 13 x 59 0 s -42,262
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CONCLUSIONS

• Integrated Approach: The integration of attraction and repulsion rules with the Unscented

Kalman Filter presents a promising solution for real-time decision-making in dynamic

environments.

• Enhanced Learning: The proposed method enhances the learning process by refining

predictions about agent movements and behaviors, leading to more robust strategies.

• Improved Reliability: Compared to traditional Q-learning and EKF-based approaches, the UKF

offers a more reliable and adaptive framework, particularly in low-frame-rate conditions where

fast, real-time decisions are required.

• Demonstrated Potential: The results demonstrate the potential of combining physical interaction

models with machine learning to improve both prediction accuracy and agent performance in

complex environments.



FUTURE WORKS

• Model Refinement:

• Future improvements will focus on refining the attraction and repulsion models to incorporate more complex

behaviors and interactions, such as environmental factors and multi-agent dynamics.

• Real-World Testing:

• The next steps include testing the algorithm on video data of real-world players to enhance the model's ability to

predict human behavior.

• Sports Analytics Application:

• Applying this algorithm to other fields, such as sports analytics, could provide new insights by analyzing player

movements and strategies in real-time

• Robotics Exploration:

• Further exploration into robotics is planned, particularly in areas such as real-time
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