
ANALYSIS OF TEST SMELL
IMPACT ON TEST CODE
QUALITY

İSMAİL CEBECİ

ASSOC. PROF. TUĞKAN TUĞLULAR

İZMİR İNSTİTUTE OF TECHNOLOGY

COMPUTER ENGINEERING MASTER OF SCIENCE

AGENDA

• Motivation/Objective

• Related Work

• Tool Infrastructures

• JNose Tool

• TestSmellDetectorTool

• Case Study

• Discussion

• Conclusion

• Suggestions

MOTIVATION

• Software testing is a fundamental part of the

software development process.

• Test cases play a crucial role in the early detection

of software bugs during the software development

process.

• Despite its importance, test smells are often

existing in test codes.

• Test smells in test code has the potential to affect

the overall quality of test suites and the quality of

the production code.

MOTIVATION

• Developers and testers may unintentionally

introduce these smells into the test code.

• Not only because of lack of skills, but also due to

pressures of deadlines, lack of awareness, or

insufficient tool support.

• It is used modern test smell detection tools-

JNose and TestSmellDetector tools-to get

information for prevalence and co-occurrence

of different smells.

OBJECTIVE

• Purpose of our study is to answer the

following research questions (RQs):

• What are the most and least frequently detected

test smells in test codes?

• What is the total number of test smells detected

by each tool and their distribution in the test code

files?

• Is there a considerable co-occurrence between the

test smells detected by JNose and

TestSmellDetector tools?

RELATED WORK

• Modern studies are going in the direction of

discovering, defining, and eliminating test

smells, and explaining their origins and

influence on the overall program quality.

RELATED WORK

• In a study conducted by Silva Junior et al.,

researchers investigated the level of

awareness regarding the unintentional

inclusion of smells in test code development.

• A survey contains 60 chosen professionals from

different organizations.

• Investigating the frequency and situations in which

they encounter smells.

• Particularly 14 types of test smells are used.

RELATED WORK

• In another study related to the severity of

test smells by Campos et al.,

• Targeting a set of tests that cause problematic

consequences.

• Mentioning the developers' point of view on

issues of tests.

• Eight test smells are used in this study

(Assertion Roulette (AR), Empty Test (EpT),

Unknown Test (UT), Eager Test (ET), Lazy Test

(LT), Constructor Initialization (CI), Sensitive

Equality (SE), and Redundant Assertion (RA)).

RELATED WORK

• In a similar study by Davide Spadini et al.,

severity thresholds for test smells are

investigated.

• 1489 java projects from Apache and Eclipse

ecosystems and TestSmellDetector tool are used,

• 4 test smells-Assertion Roulette (AR), Eager Test

(ET), Verbose Test (VT), and Conditional Test Logic

(CTL)- are observed as higher thresholds than

others.

RELATED WORK

• Another study by Michele Tufano et al.

presented

• A survey contains 19 developers.

• Purpose of the survey is to find out how they

rated test smells as design issues.

• A huge empirical study based on commit history of

152 open-source projects

• Focusing on when test smells are introduced, how

long they last and their relationship.

• The JNose Test tool enables testers

• To review the past versions of the software

projects

• To find the test coverage and the test smells that

often affect the code quality.

TOOL
INFRASTRUCTURE –
JNOSE TOOL

• Figure 1: Schematic overview of the JNose Test tool and its

main features

• (i) Data Input: This part receives the input for the tool

execution, such as test smell types of list, analysis mode and

the project for analysis.

• (ii) Project Analysis: This component presents the analysis of

the program by choosing the analysis mode.

• (iii) Data Output: By this component, the status of the

execution is being rendered and the .csv file containing the

results of the analysis is generated.

Figure 1: High-level architecture of JNose tool

TOOL
INFRASTRUCTURE –
JNOSE TOOL

TOOL
INFRASTRUCTURE –
JNOSE TOOL

• The JNose Tool offers the capability to detect

and analyze smells in various ways.

• Firstly, it can detect smells in a specific test class

using the TestClass method, which provides

information about the quantity of each type of

smell detected in the test class.

• Secondly, it can detect smells across multiple

project versions using the Evolution method, which

provides information about the authors and

timestamps of the test smell's insertion in the test

code.

• Lastly, the detection can be used to identify the

precise location of a test smell using the TestSmell

method, which returns the method location of the

smell for the purpose of analyzing the quality of

the test code.

• In accordance with the GNU General Public

License, the JNose Test tool is licensed. The

software tool is developed as a Java project

and consists of four packages:

• (i) core, which is responsible for detecting test

smells and coverage metrics;

• (ii) page, which is responsible for displaying web

pages and their content;

• (iii) dto, which includes the classes used in data

transfer (Data Transfer Object);

• (iv) util, which is responsible for identifying tests

and production classes and saving results into.csv

files

TOOL
INFRASTRUCTURE –
JNOSE TOOL

TOOL
INFRASTRUCTURE –
TESTSMELLDETECTOR
TOOL

• TestSmellDetector tool is a Java jar file that is

open-source.

• The TestSmellDetector tool provides a

detailed list of detected smells, with their

respective definitions and detection

algorithms.

• TestSmellDetector tool presently identifies 19 test

smells that are applicable to all Java-based systems.

• The implementation of TestSmellDetector

tool as a self-contained executable file, as a

plugin, eliminates the need for users to own a

dedicated Integrated Development

Environment (IDE) on their system for

identifying smells in their test code.

• Figure 2 illustrates an overview of the architectural

design of the TestSmellDetector tool. The project

structure is used in ① and ② to identify the test and

production files. TestSmellDetector tool determines

whether test smells are present in the test files in ③

and ④. The test smell detection process findings are

saved in ⑤.

Figure 2: High-level architecture of TestSmellDetector tool

TOOL
INFRASTRUCTURE –
TESTSMELLDETECTOR
TOOL

CASE STUDY

• Figure 3 shows an overview of our study. Mainly in this

study, there are four parts to get results to compare

and to answer our research questions.

Figure 3: High-level architecture of our study

CASE STUDY –
PROJECT
SELECTION

• Project Selection:

• These procedures led to the collection of data

from 13,703 open-source Java projects

• 500 distinct projects are randomly chosen from

this collection of open-source Java projects.

• These projects work with the Test Smell Detector

Tool as well as the JNose Tool.

CASE STUDY -
IMPLEMENTATION
OF AUTOMATED
SCRIPTS:

• Implementation of Automated Scripts:

• Four fundamental Python files were implemented.

• All functions’ explanations are present on the

GitHub project

https://github.com/ismailcebeci/Master_Thesis_Pro

ject

https://github.com/ismailcebeci/Master_Thesis_Project
https://github.com/ismailcebeci/Master_Thesis_Project

CASE STUDY -
IMPLEMENTATION
OF AUTOMATED
SCRIPTS:

• preparation_for_using_tools.py

• def read_csv_and_extract_info(file_path) function:

To pick out necessary column names from input

.csv file.

• def create_folders(base_path, folder_names)

function: The create_folders function creates

empty folder with using

"git_project_modified_name" list

• clone_git_projects(base_path, git_clone_url,

git_project_modified_name) function: To clone

GitHub projects into created empty folders one by

one.

• find_files_for_test_and_source_codes_by_partial_

name(folder_path, partial_name) function: To test

files and their associated source files within

GitHub project folders.

CASE STUDY -
IMPLEMENTATION
OF AUTOMATED
SCRIPTS:

• remove_java_test_and_source_files_from_list(test_file

_paths,source_file_paths) function: To removes the

files, where the lines’ sole content are comments.

• write_lists_to_csv(constant_name,list1, list2,

output_folder, file_name) function: The main role of

this method is the creation of a structured CSV file as

shown Figure 4, which is originally named with

output.csv and it is specifically designed to meet the

given inputs of the TestSmellDetector application.

Figure 4: Output csv file of write_lists_to_csv function

CASE STUDY -
IMPLEMENTATION
OF AUTOMATED
SCRIPTS:

• using_test_smell_tools.py

• execute_tool(tool_path, file_name) function:To

execute TestSmellDetectorTool based on the

command 'java -jar {tool_path} {file_name}’ with

'output.csv' as a file input. It also produces a

detailed output file, named

“output_TestSmellDetection_*.csv”

• delete_files_by_pattern(folder_path,

filename_pattern) function: It is designed to

implement the procedure for deleting files left

over from past executions.

• read_csv_files_by_pattern(folder_path,filename_p

attern) function: To read results clearly going

through the CSV file

“output_TestSmellDetection_*.csv” as shown in

Figure 5.After reading,

Output_of_TestSmellDetector_Tool.txt file is

saved as Figure 6.

CASE STUDY - IMPLEMENTATION OF AUTOMATED
SCRIPTS:
CASE STUDY - IMPLEMENTATION OF AUTOMATED
SCRIPTS:

Figure 5: Elements of columns_to_read list Figure 6: Part of contents of

Output_of_TestSmellDetector_Tool.txt

CASE STUDY -
IMPLEMENTATION
OF AUTOMATED
SCRIPTS:

• read_csv_for_Jnose_tool: To parse CSV files output by

JNose Tool (filenames follows a pattern

"{project_name}_result_byclasstest_testsmells.csv") as

shown in Figure 7. Also, it saves a results after parsing

as “{project_name}_Output.txt” as shown in Figure 8

within a designated output folder.

Figure 7: Output of JNose Tool

after analysis

Figure 8: Output of

read_csv_for_Jnose_tool function

CASE STUDY -
IMPLEMENTATİON
OF AUTOMATED
SCRIPTS:

• merge_txt_files(file_paths, output_file) function

and updated_merge_txt_files(input_file_path,

output_file_path) function: To merge results by

two different tools, into one conclusive file titled

“Merged_output_txt_file.txt”. After merging,

findings might not be next to each other.

Therefore, to reorganize findings,

updated_merge_txt_files is called.

CASE STUDY -
IMPLEMENTATİON
OF AUTOMATED
SCRIPTS:

• comparing_results_of_each_tool.py

• To compare the results of different testing

methods which are used in the detection of smells.

Co-occurrence Analysis, Ratio Calculation and

Comparison and Visualization are done in this file.

• jnose_website.py

• To accesses the webpage which is related to Jnose

Tool. It automatically inputs GitHub project links

into the local server address

"http://127.0.0.1:8080" and analyze each project.

Then, it downloads results in the .CSV format.

CASE STUDY -
RESULTS

• The JNose Tool detected

81773 test smells in total

using all files. The

TestSmellDetector tool

detected 89497 test

smells in total using all

files.

• 5478 files were used for

this analysis.

• Figure 9 shows that the Jnose Tool identified 1550 files that

exhibited no test smells, In contrast, the TestSmellDetector

Tool demonstrated a higher identification rate, with 1075

files reported as unaffected.

Figure 9: Number of Affected and not Affected Files

CASE STUDY -
TOTAL NUMBER
OF TEST SMELLS

• TestSmellDetector is very effective in

detecting 'Magic Number Test' smell

with 28,443 detection rates

• TestSmellDetector Tool also detected

with high rate to other types of test

smells like 'Exception Catching

Throwing' and 'Lazy Test' which the

tool detected 13,612 and 16,570

occurrences.

• For 'Assertion Roulette,

TestSmellDetector Tool detected

10,488 occurence.

Figure 10: Total Number of Test Smells with using JNose and

TestSmellDetector Tools in all files

CASE STUDY -
TOTAL NUMBER
OF TEST SMELLS

• JNose Tool is more effective for

detecting the 'Assertion Roulette with

41,876 occurence.

• The JNose Tool exhibits greater

detection rates for the 'Magic Number

Test' and 'Lazy Test', with detection

rates of 11,264 and 3984 occurrences,

respectively.

• JNose tool performed high detection

rates: ‘Eager Test’ with detection rate

of 3692

Figure 11: Total Number of Test Smells with using JNose

and TestSmellDetector Tools in all files

CASE STUDY -
NUMBER OF
AFFECTED FILES BY
EACH TEST SMELLS

• By using the TestSmellDetector tool,

highest numbers of affected files by

'Magic NumberTest', 'Assertion

Roulette', 'Exception Catching

Throwing', 'Eager Test', 'Lazy Test', and

'Unknown Test' are detected as 4222,

2503, 2463, 1126, 1070, and 1030.

• By using the JNose tool, highest numbers of affected files by 'Assertion Roulette', 'Lazy Test',

'Magic NumberTest', 'Exception CatchingThrowing', 'Unknown Test', and 'Eager Test' are

detected as 3056, 1396, 1364, 969, and 905.

Figure 12: Number of Affected Files by Each Test Smells

CASE STUDY - CO-
OCCURRENCE OF TEST
SMELLS BASED ON JNOSE
TOOL

• Between 'Conditional Test Logic' and

'Eager Test' co-occurrence value is

[1.00].

• Co-occurrence rate of the pairing of

'Exception Catching Throwing' with

'Unknown Test’ is [0.99].

• Next strong correlations are the one

observed between 'Sleepy Test' and

'Constructor Initialization', with a co-

occurrence value of [0.96].

Figure 13: Co-occurrence Matrix for JNose Tool

CASE STUDY - CO-
OCCURRENCE OF TEST
SMELLS BASED ON JNOSE
TOOL

• 'Magic Number Test' and

'Redundant Assertion', with a

negligible co-occurrence rate of

[0.01].

• 'Mystery Guest' and 'Assertion

Roulette' and, 'Empty Test' and

'Assertion Roulette' where the

co-occurrence rate stands at

[0.01] for both pairs.

Figure 14: Co-occurrence Matrix for JNose Tool

CASE STUDY - CO-
OCCURRENCE OF TEST
SMELLS BASED ON
TESTSMELLDETECTOR
TOOL

• Between 'Unknown Test'

and 'Eager Test' and their

co-occurrence value is

[0.97].

• The pairing of 'Source

Optimism' with 'Mystery

Guest' has a strong co-

occurrence rate of [0.95]

Figure 15: Co-occurrence Matrix for TestSmellDetector Tool

CASE STUDY - CO-
OCCURRENCE OF TEST
SMELLS BASED ON
TESTSMELLDETECTOR
TOOL

• Between 'Magic Number Test'

and 'Redundant Assertion', 'Magic

Number Test' and 'Sleepy Test',

'Assertion Roulette' and 'Empty

Test', 'Empty Test' and 'Exception

Catching Throwing', 'Empty Test'

and 'Lazy Test', so on with a

negligible co-occurrence rate of

[0.01]

Figure 16: Co-occurrence Matrix for TestSmellDetector Tool

DISCUSSION -
TOTAL NUMBER
OF TEST SMELLS

• Used GitHub projects have the

smells that we mentioned above

mostly and have bad code quality.

• For 5 most detected test smells,

the reason might be like as

following:

• For ‘Assertion Roulette’,

there are added several

assertions to a single test to

check multiple conditions.

Figure 17: Total Number of Test Smells with using JNose and TestSmellDetector

Tools in all files

DISCUSSION -
TOTAL NUMBER
OF TEST SMELLS

• For ‘Magic Number Test’, there

can be usages of hardcoded,

unexplained numeric values,

which can easily slip into code.

• For ‘Eager Test’, there are trials to

check too many functionalities at

once, which is a typical result of

trying to reduce the number of

test methods without considering

the isolation of functionalities.

Figure 18: Total Number of Test Smells with using JNose and TestSmellDetector

Tools in all files

DISCUSSION -
TOTAL NUMBER
OF TEST SMELLS

• For ‘Lazy Test’, there are not fully

coverages for the expected

functionalities, often because tests are not

updated to reflect changes in the

application's requirements or

functionality.

• For ‘Exception Catching Throwing’, there

can be improper handlings or testing of

exceptions. The test may fail to sufficiently

assert the throwing of exceptions or

might overly generalize exception

handling, catching more than it should.

Figure 19: Total Number of Test Smells with using JNose and TestSmellDetector

Tools in all files

DISCUSSION - CO-
OCCURRENCE OF TEST
SMELLS BASED ON JNOSE
TOOL

• Following co-occurence rates are high

and reasons can be:

• For 'Conditional Test Logic' and 'Eager

Test’:

• By nature of Conditional Test

Logic that test cases will cover

multiple possible results.

• Like this often tries to establish

so many things at once sets it up

to be identified as an 'Eager Test.’.

Figure 20: Co-occurrence Matrix for JNose Tool

DISCUSSION - CO-
OCCURRENCE OF TEST
SMELLS BASED ON JNOSE
TOOL

• For 'Exception Catching Throwing' with

'Unknown Test’:

• They are overlap because of a lack

of specificity and intentionality in

test design.

• Also, poor test design, inadequate

documentation, and the tendency

to apply quick fixes under

pressure.

Figure 21: Co-occurrence Matrix for JNose Tool

DISCUSSION - CO-
OCCURRENCE OF TEST
SMELLS BASED ON JNOSE
TOOL

• For 'Sleepy Test' and 'Constructor

Initialization’:

• The common denominator is a

combination of insufficient handling

of test setup.

• Also test codes have a lack of

understanding or utilization of

more robust synchronization and

initialization mechanisms.

Figure 22: Co-occurrence Matrix for JNose Tool

DISCUSSION - CO-
OCCURRENCE OF TEST
SMELLS BASED ON JNOSE
TOOL

• Following co-occurence rates are low

and reasons can be:

• For 'Magic Number Test' and

'Redundant Assertion’:

• Magic numbers often result from a

lack of documentation or

understanding of the code, while

redundant assertions tend to from

copy-pasting test code without

proper refinement.

• The presence of magic numbers

does not require or logically lead

to redundant assertions
Figure 23: Co-occurrence Matrix for JNose Tool

DISCUSSION - CO-
OCCURRENCE OF TEST
SMELLS BASED ON JNOSE
TOOL

• Both co-occurence of 'Mystery Guest'

and 'Assertion Roulette' and, 'Empty

Test' and 'Assertion Roulette’ are low

because and the reason can be:

• 'Mystery Guest' deals with unclear

test dependencies, while 'Assertion

Roulette' concerns the clarity of

the assertions within the test.

• Both 'EmptyTest' and 'Assertion

Roulette' cannot co-occur simply

because an 'EmptyTest' has no

assertions, and therefore cannot

create a situation where it's

unclear which assertion might fail.

Figure 24: Co-occurrence Matrix for JNose Tool

DISCUSSION - CO-
OCCURRENCE OF TEST
SMELLS BASED ON
TESTSMELLDETECTOR
TOOL

• Following co-occurence rates are high

and reasons can be:

• For 'Unknown Test' and 'Eager Test:

• 'Unknown Test' naturally serves

the purpose of tests that are

overextended in the scope 'Eager

Test'.

Figure 25: Co-occurrence Matrix for TestSmellDetector Tool

DISCUSSION - CO-
OCCURRENCE OF TEST
SMELLS BASED ON
TESTSMELLDETECTOR
TOOL

• For 'Source Optimism' with 'Mystery

Guest’

• Both smells come from a

problematic handling of external

resources in test cases.

Figure 26: Co-occurrence Matrix for TestSmellDetector Tool

DISCUSSION - CO-
OCCURRENCE OF TEST
SMELLS BASED ON
TESTSMELLDETECTOR
TOOL

• Following co-occurence rates are low

and reasons can be:

• For 'Magic Number Test' and

'Redundant Assertion’:

• The use of unclear literals doesn't

necessarily lead to repeating

assertions, and vice versa.

• For 'Magic Number Test' and 'Sleepy

Test’ :

• The presence of arbitrary literal

values ('Magic Number Test') in a

test is unrelated to the use of

unnecessary wait times

Figure 27: Co-occurrence Matrix for TestSmellDetector Tool

DISCUSSION - CO-
OCCURRENCE OF TEST
SMELLS BASED ON
TESTSMELLDETECTOR
TOOL

• For 'Assertion Roulette' and 'Empty Test’:

• 'Assertion Roulette' involves tests

with multiple unclear assertions,

whereas an 'Empty Test' contains no

executable statements or assertions

at all

• For 'Empty Test' and 'Exception Catching

Throwing’:

• Since 'Empty Test' lacks

implementation, it cannot

concurrently exhibit specific

behaviors such as improperly

managing exceptions ('Exception

Catching Throwing').

Figure 28: Co-occurrence Matrix for TestSmellDetector Tool

DISCUSSION - CO-
OCCURRENCE OF TEST
SMELLS BASED ON
TESTSMELLDETECTOR
TOOL

• For Empty Test' and 'Lazy Test’:

• 'Lazy Test' implies a test

that inadequately verifies

the functionality it's

intended to test, often

through overly simplistic or

incomplete assertions. In

contrast, an 'Empty Test'

doesn't perform any action

or assertion.

Figure 29: Co-occurrence Matrix for TestSmellDetector Tool

CONCLUSION

• With using 500 distinct open-source GitHub

projects, These results are observed.

• (i) the rate of detection of test smells by each

tool,

• With considering both tools’ results, following

5 test smells are detected rarely: 'Dependent

Test', ‘DefaultTest’, ‘Sleepy Test’, ‘Redundant

Assertion’ and ‘Constructor Initialization’.

• With considering both tools’ results, following

5 test smells are detected rarely: 'Dependent

Test', ‘DefaultTest’, ‘Sleepy Test’, ‘Redundant

Assertion’ and ‘Constructor Initialization’.

CONCLUSION

• (ii) the number of affected test code files by

test smells,

• For JNose tool, test code files are affected by

Magic Number Test and Lazy Test test smells

mostly as 3056 and 1396 respectively.

• For TestSmellDetector tool, test code files are

affected by Magic Number Test and Assertion

Roulette test smells frequently as 4222 and

2503 respectively.

CONCLUSION

• (iii) the co-occurrence rate of detected test

smells with the mentioned tools.

• Between 'Conditional Test Logic' and 'Eager Test'

has most strong relationship with a co-occurrence

value of [1.00] with using JNose tool.

• Also, the pairing of 'Exception Catching Throwing'

with 'Unknown Test' and a high co-occurrence rate

of [0.99] of using JNose Tool shows a strong

correlation.

• On the other hand, the notable correlation

observed in this case is between 'Unknown Test'

and 'Eager Test' and their co-occurrence value of

[0.97] with using TestSmellDetector tool.

• Additionally, the pairing of 'Source Optimism' with

'Mystery Guest' has a strong co-occurrence rate of

[0.95] with using TestSmellDetector Tool.

CONCLUSION –
FUTURE WORK

• To study with larger projects, including a more

extensive set of test smells.

• To implement a new tool to detect test smells

and refactor them further.

SUGGESTIONS • Any questions or suggestions ?

	Slide 1: Analysis of Test Smell Impact on Test Code Quality
	Slide 2: AGENDA
	Slide 3: Motıvatıon
	Slide 4: MotIvatıon
	Slide 5: Objectıve
	Slide 6: Related Work
	Slide 7: Related Work
	Slide 8: Related Work
	Slide 9: Related Work
	Slide 10: Related Work
	Slide 11: Tool Infrastructure – Jnose Tool
	Slide 12
	Slide 13: Tool Infrastructure – Jnose Tool
	Slide 14: Tool Infrastructure – Jnose Tool
	Slide 15: Tool InfraStructure – TestSmellDetector Tool
	Slide 16: Tool InfraStructure – TestSmellDetector Tool
	Slide 17: Case Study
	Slide 18: Case Study – Project Selectıon
	Slide 19: Case Study - ImplementatIon of Automated ScrIpts:
	Slide 20: Case Study - ImplementatIon of Automated ScrIpts:
	Slide 21: Case Study - ImplementatIon of Automated ScrIpts:
	Slide 22: Case Study - ImplementatIon of Automated ScrIpts:
	Slide 23: Case Study - ImplementatIon of Automated ScrIpts:
	Slide 24: Case Study - ImplementatIon of Automated ScrIpts:
	Slide 25: Case Study - Implementation of Automated ScrIpts:
	Slide 26: Case Study - Implementation of Automated ScrIpts:
	Slide 27: Case Study - Results
	Slide 28: Case Study - Total Number of Test Smells
	Slide 29: Case Study - Total Number of Test Smells
	Slide 30: Case Study - Number of Affected Files by Each Test Smells
	Slide 31: CASE Study - Co-occurrence of Test Smells based on JNose Tool
	Slide 32: CASE Study - Co-occurrence of Test Smells based on JNose Tool
	Slide 33: CASE Study - Co-occurrence of Test Smells based on TestSMellDetector Tool
	Slide 34: CASE Study - Co-occurrence of Test Smells based on TestSMellDetector Tool
	Slide 35: DISCUSSION - Total Number of Test Smells
	Slide 36: DISCUSSION - Total Number of Test Smells
	Slide 37: DISCUSSION - Total Number of Test Smells
	Slide 38: DISCUSSION - Co-occurrence of Test Smells based on JNose Tool
	Slide 39: DISCUSSION - Co-occurrence of Test Smells based on JNose Tool
	Slide 40: DISCUSSION - Co-occurrence of Test Smells based on JNose Tool
	Slide 41: DISCUSSION - Co-occurrence of Test Smells based on JNose Tool
	Slide 42: DISCUSSION - Co-occurrence of Test Smells based on JNose Tool
	Slide 43: DISCUSSION - Co-occurrence of Test Smells based on TestSMellDetector Tool
	Slide 44: DISCUSSION - Co-occurrence of Test Smells based on TestSMellDetector Tool
	Slide 45: DISCUSSION - Co-occurrence of Test Smells based on TestSMellDetector Tool
	Slide 46: DISCUSSION - Co-occurrence of Test Smells based on TestSMellDetector Tool
	Slide 47: DISCUSSION - Co-occurrence of Test Smells based on TestSMellDetector Tool
	Slide 48: Conclusıon
	Slide 49: Conclusıon
	Slide 50: Conclusıon
	Slide 51: Conclusıon – Future work
	Slide 52: Suggestıons

