
Precise Code
Fragment Clone
Detection

Mariam Arutunian
Matevos Mehrabyan

Sevak Sargsyan
Hayk Aslanyan

VALID 2024
September 29, 2024 to October 03, 2024 - Venice, Italy

About us
Center of Advanced Software
Technologies, Armenia
■ Members (~50 and growing)
■ Research and development, research projects with leading

companies
■ Publications (40+, Scopus, Web of Science)

○ Program analysis, software security
○ NLP, ECG, medical data analysis
○ Autonomous systems and robotics

■ Education

Motivation
Identifying copied code fragments is vital for software

■ Management
■ Maintenance
■ Security

Applications
■ Software plagiarism detection
■ Malware detection and classification
■ Finding known vulnerabilities and avoiding bug propagation

Facts

Studies show that

■ About 20% of code is duplicated in software packages [1]
● Copy-Paste
● Compiler optimizations like inlining, transformations.

■ Over 96% of commercial software packages incorporate open-source code
[2]

■ 7,800 open-source projects has shown that 44% of them have at least one
pair of identical code fragments [3]

Source Code Clones

Original Type 1 Type 2 Type 3 Type 4

float sum = 0.0;
for (int i = 0; i<n; i++) {
 sum = sum + F[i];
}

float sum = 0.0; // Comment
for (int i = 0; i<n; i++) {
 ___ sum = sum + F[i];
}

■ Comments
■ Whitespaces

int sum1 = 0; // Comment
for (int i = 0; i<n; i++) {
___ sum1 = sum1 + F[i];
}

■ Includes Type 1
■ Identifiers
■ Literals
■ Types

int prod = 1; // Comment
for (int i = 0; i<n; i++) {
___ prod = prod * F[i];
}

■ Includes Type 2
■ Instructions addition
■ Instructions deletion
■ instructions modification

int factorial_rec (int n) {
 if (n <= 1) {
 return 1;
 } else {
 return n * factorial_rec (n - 1);
 }
}

■ The same calculation, but
uses different instructions

Binary Code Clones

Original BinType 1 BinType 2 BinType 3 BinType 4

mov [ebp+var_1], 5
mov eax, [ebp+var_1]
iadd eax, [ebp+var_4]

mov [ebp+var_1], 5
mov eax, [ebp+var_1]
iadd eax, [ebp+var_4]

■ Identical

mov [ebp+var_1], 10
mov ecx, [ebp+var_1]
iadd ecx, [ebp+var_4]

■ Includes Type 1
■ Registers
■ Literals
■ Operand size

mov [ebp+var_1], 10
mov ecx, [ebp+var_1]
iadd ecx, [ebp+var_4]

■ Includes Type 2
■ Instructions addition
■ Instructions deletion
■ instructions modification

factorial_O3:
 movl $1, %eax
 cmpl $1, %edi
 jle .L1
 .p2align 4,,10
 .p2align 3
.L2:
 movl %edi, %edx
 subl $1, %edi
 imull %edx, %eax
 cmpl $1, %edi
 jne .L2
.L1:
 ret
■ The same calculation, but

uses different instructions

01 Only few can detect clones of fragments rather than whole functions

Problem Description

02 There is no unified approach: either source or binary code clone detection

Despite the variety of code clone detection methods and tools:

■ Different types of metrics are calculated for
code fragments usually on some graph
representation, such as AST or PDG.

■ Suffers in precision and produces many false
positives

■ Two code fragments are compared in the form of
text/strings

■ Finds Type 1 clones

Code Clone Detection Techniques

■ The entire code is transformed into a sequence of
tokens

■ More robust against code changes than the text-based
techniques

■ Finds Type 1 and Type 2 clones

Text-based

Token-based

■ Uses parse trees or AST of the analyzable code
■ Tree matching algorithm for similar subtree detection
■ Finds Type 1, Type 2 and Type 3 clones
■ Low precision for Type 3 clones detection

■ Maximal isomorphic or similar subgraphs are
searched on PDGs or CFGs

■ Are robust to the insertion and deletion of code,
reordered instructions, intertwined and
non-contiguous code.

Tree-based

Graph-based

■ The focus is on training models to classify or
cluster similar code fragments

■ Needs a large dataset containing similar and
dissimilar examples of codes

■ Finds Type 1 , Type 2, Type 3, Type 4 clones,

Metrics-based Machine learning-based

Architecture of The Method

Fragment

Project

Similarity
Percentage

Fragment’s PDG

Project functions’
PDGs

Initial
vertices

Temporarily
matching vertices

Checking for
compatibility

2. PDGs’ matching

Detected
Clones

1. PDG construction

Architecture of The Method

Fragment

Project

Similarity
Percentage

Fragment’s PDG

Project functions’
PDGs

Initial
vertices

Temporarily
matching vertices

Checking for
compatibility

2. PDGs’ matching

Detected
Clones

1. PDG construction

Program Dependency Graph

Program Dependency Graph (PDG) is a directed graph where

■ Vertices are instructions of Intermediate Representation (IR)
■ Edges are data and control dependencies between instructions

instruction_1

instruction_2

instruction_3 instruction_5

instruction_4 instruction_6 instruction_7

instruction_6

Control dependency

Data dependency

PDG construction

PDGs are constructed

■ For all functions of the project to analyze
■ For the code fragment

instruction_1

instruction_2

instruction_3 instruction_5

instruction_4 instruction_6 instruction_7

instruction_6

Fragment’s
instructions

Project’s PDGs Fragment’s PDGs

…

function_1 function_2 function_N

Architecture of The Method

Fragment

Project

Similarity
Percentage

Fragment’s PDG

Project functions’
PDGs

Initial
vertices

Temporarily
matching vertices

Checking for
compatibility

2. PDGs’ matching

Detected
Clones

1. PDG construction

Matching algorithm has two main phases:

■ Construction of the set of initial matched vertex pairs
■ Iterative expansion of matched vertex pairs

Function’s PDG

Graphs’ Matching

Fragment’s PDG

Matching algorithm has two main phases:

■ Construction of the set of initial matched vertex pairs
■ Iterative expansion of matched vertex pairs

Graphs’ Matching

Function’s PDG
Fragment’s PDG

Matching algorithm has two main phases:

■ Construction of the set of initial matched vertex pairs
■ Iterative expansion of matched vertex pairs

Graphs’ Matching

Function’s PDG
Fragment’s PDG

Graphs’ Matching

Matching algorithm has two main phases:

■ Construction of the set of initial matched vertex pairs
■ Iterative expansion of matched vertex pairs

Function’s PDG
Fragment’s PDG

Matching algorithm has two main phases:

■ Construction of the set of initial matched vertex pairs
■ Iterative expansion of matched vertex pairs

Graphs’ Matching

similarity =
matched common vertices count

fragment PDG’s vertices count
100%*

Function’s PDG
Fragment’s PDG

01 All vertices (v,v*) with no incoming edges in both PDGs, where v ∈ fragment_PDG,
v* ∈ function_PDG

Graphs’ Matching - Initial Vertices Selection

02 All vertices (v, v*), where v ∈ fragment_PDG and |pred_ctrl(v)| is the maximum. v* ∈
function_PDG and |pred_ctrl(v*)| ≥ |pred_ctrl(v)|

Based on experimental evaluation, the following subroutines were
chosen for initial vertices pair selection:

03 All vertices (v, v*), where v ∈ fragment_PDG and pred_data(v) is the maximum. v* ∈
function_PDG and pred_data(v*) ≥ pred_data(v)

Graphs’ Matching

1. Temporarily matching vertices
○ Five subroutines.

2. Checking for compatibility
○ The temporarily matched pairs are

checked against two conditions and
some of them may be filtered out.

The matching process is complete when no
new pairs of vertices are temporarily matched

Initial
vertices

Temporarily
matching vertices

Checking for
compatibility

2. PDGs’ matching

Temporarily Matching Subroutines

Based on incoming and outgoing control flow

Based on basic block

Based on predecessor and successor basic blocks

Based on incoming and outgoing data flow

Based on initial_pairs

01 opcode(u) == opcode(u*)

Temporarily Matching Subroutines

02 |pred_ctrl(u)| == |pred_ctrl(u*)|

03 |succ_ctrl(u)| == |succ_ctrl(u*)|

04 (u, u*) ∉ matched_pairs

05 (u, u*) ∉ incompatible_pairs

Temporarily matching is allow for two vertices (u, u*):

#1 Temporarily Matching Subroutine
For each pair (v, v*) ∈ matched_pairs, temporarily match vertices:

■ (u, u*), where u ∈ pred_ctrl(v), u* ∈ pred_ctrl(v*), TMP_MATCH_ALLOWED((u, u*)) == true

■ (s, s*), where s ∈ succ_ctrl(v), s* ∈ succ_ctrl(v*), TMP_MATCH_ALLOWED((s, s*)) == true

Function PDG
Fragment PDG

Control dependency

Data dependency

Matched

Temporarily matched

#1 Temporarily Matching Subroutine
For each pair (v, v*) ∈ matched_pairs, temporarily match vertices:

■ (u, u*), where u ∈ pred_ctrl(v), u* ∈ pred_ctrl(v*), TMP_MATCH_ALLOWED((u, u*)) == true

■ (s, s*), where s ∈ succ_ctrl(v), s* ∈ succ_ctrl(v*), TMP_MATCH_ALLOWED((s, s*)) == true

Function PDG
Fragment PDG

Control dependency

Data dependency

Matched

Temporarily matched

#2 Temporarily Matching Subroutine
For each pair (v, v*) ∈ matched_pairs, temporarily match vertices:

■ (u, u*), where u ∈ bb(v), u* ∈ bb(v*), TMP_MATCH_ALLOWED((u, u*)) == true

Function’s Basic Block
Fragment’s Basic Block

Matched

Temporarily matched

#2 Temporarily Matching Subroutine
For each pair (v, v*) ∈ matched_pairs, temporarily match vertices:

■ (u, u*), where u ∈ bb(v), u* ∈ bb(v*), TMP_MATCH_ALLOWED((u, u*)) == true

Function’s Basic Block
Fragment’s Basic Block

Matched

Temporarily matched

#3 Temporarily Matching Subroutine
For each pair (v, v*) ∈ matched_pairs, temporarily match vertices:

■ (u, u*), where u ∈ pred_bb(v), u* ∈ pred_bb(v*), TMP_MATCH_ALLOWED((u, u*)) == true

■ (s, s*), where s ∈ succ_bb(v), s* ∈ succ_bb(v*), TMP_MATCH_ALLOWED((s, s*)) == true

Matched

Temporarily matched

#3 Temporarily Matching Subroutine
For each pair (v, v*) ∈ matched_pairs, temporarily match vertices:

■ (u, u*), where u ∈ pred_bb(v), u* ∈ pred_bb(v*), TMP_MATCH_ALLOWED((u, u*)) == true

■ (s, s*), where s ∈ succ_bb(v), s* ∈ succ_bb(v*), TMP_MATCH_ALLOWED((s, s*)) == true

Matched

Temporarily matched

#4 Temporarily Matching Subroutine
For each pair (v, v*) ∈ matched_pairs, temporarily match vertices:

■ (u, u*), where u ∈ pred_data(v), u* ∈ pred_data(v*), TMP_MATCH_ALLOWED((u, u*)) == true

■ (s, s*), where s ∈ succ_data(v), s* ∈ succ_data(v*), TMP_MATCH_ALLOWED((s, s*)) == true

Function PDG
Fragment PDG

Control dependency

Data dependency

Matched

Temporarily matched

#4 Temporarily Matching Subroutine
For each pair (v, v*) ∈ matched_pairs, temporarily match vertices:

■ (u, u*), where u ∈ pred_data(v), u* ∈ pred_data(v*), TMP_MATCH_ALLOWED((u, u*)) == true

■ (s, s*), where s ∈ succ_data(v), s* ∈ succ_data(v*), TMP_MATCH_ALLOWED((s, s*)) == true

Function PDG
Fragment PDG

Control dependency

Data dependency

Matched

Temporarily matched

#5 Temporarily Matching Subroutine
Temporarily match vertices (u, u*) ∈ initial_pairs, (u, u*) ∉ matched_pairs, (u, u*) ∉ incompatible_pairs

Function’s initial vertices : [v8, v14, v98]

Fragment’s initial vertices : [u4, u72]

#5 Temporarily Matching Subroutine
Temporarily match vertices (u, u*) ∈ initial_pairs, (u, u*) ∉ matched_pairs, (u, u*) ∉ incompatible_pairs

Function’s initial vertices : [v8, v14, v98]

Fragment’s initial vertices : [u4, u72]

Temporarily
matched pairs Check

Matched pairs

Incompatible
pairs

success

fail

Checking for Compatibility

01 pred_condition(v, v*) fails if:

∃p ∈ pred_ctrl(v), (p, p*) ∈ matched_pairs, ∄p* ∈ pred_ctrl(v*),

02 succ_condition(v, v*) fails if:

∃s ∈ succ_ctrl(v), (s, s*) ∈ matched_pairs, ∄s* ∈ succ_ctrl(v*),

Implementation

FCD

Project containing
the fragment

Fragment’s
function name

Fragment’s
boundaries

Similarity
percentage

Project to analyze

Clones

Used Intermediate Representations

■ Source Code - LLVM intermediate representation

■ Binary Code - REIL intermediate representation

Testing System

The testing system creates PDGs of real-world projects, duplicates each PDG, removes
some vertices from it and considers the original one as a fragment.

■ It randomly selects a basic block and removes it vertices until the desired percentage is
reached

■ If the desired percentage wasn’t reached by removing all vertices of the basic block,
another random basic block is selected for vertices removal.

■ Predecessor vertices of the removed vertices are connected to their successor vertices.

■ Testing was done for 100%, 90%, 80%, and 70% similarity clones.

Source Code Clones Evaluation

Project C/C++ code
lines Precision Recall RMSE FCD speed

c-ares 1.15.0 61087 97.5 95.2 6.1 29s

jasper 1.900.1 28279 95.4 93 6 15s

openssl 1.0.2t 310922 97 95.1 7.7 2s

rsync 3.1.3 44832 96 91.9 10.7 26s

Binary Code Clones Evaluation (1)

Project Size of the
binary Architecture Precision Recall RMSE FCD speed

libcares 2.3.0
(c-ares 1.15.0) 86 KiB x86-64 98.9 95.6 4.6 41s

libcares 2.3.0
(c-ares 1.15.0) 96 KiB x86 97.9 93.4 5.5 43s

libcares 2.3.0
(c-ares 1.15.0) 146 KiB ARM 98.9 95.6 4.6 49s

jasper 1.900.1 1.5 MiB x86-64 96 92.1 5.4 3m 5s

jasper 1.900.1 368 KiB x86 95 90 6.5 2m 1s

jasper 1.900.1 478 KiB ARM 94.1 89.8 6.1 2m 8s

Binary Code Clones Evaluation (2)

Project Size of the
binary Architecture Precision Recall RMSE FCD speed

openssl 1.0.2t 536 KiB x86-64 99.9 98.1 3.8 1m 10s

openssl 1.0.2t 507 KiB x86 98.8 95.8 3.9 0m 57s

openssl 1.0.2t 634 KiB ARM 97.9 95.6 4.4 1m 25s

rsync 1.3.2 1.7 MiB x86-64 96 91 6.6 3m 34s

rsync 1.3.2 1.6 MiB x86 94.9 88.9 6.7 3m 21s

rsync 1.3.2 1.8 MiB ARM 94.1 88.8 7.4 3m 58s

Detected Clones of Existing CVEs

Found 14 bugs
■ 7 of them are already accepted

■ 2 of them are rejected as the maintainers use the projects as tests

Openly accessible discoveries
■ CMake - https://gitlab.kitware.com/cmake/cmake/-/issues/26112

■ OpenJPEG https://github.com/uclouvain/openjpeg/issues/1539

■ PointCloudLibrary https://github.com/PointCloudLibrary/pcl/issues/6080

■ 0ad https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1036970

■ ITK https://github.com/InsightSoftwareConsortium/ITK/issues/4777

Due to security concerns, 2 of our findings remain confidential.

https://gitlab.kitware.com/cmake/cmake/-/issues/26112
https://github.com/uclouvain/openjpeg/issues/1539
https://github.com/PointCloudLibrary/pcl/issues/6080
https://bugs.debian.org/cgi-bin/bugreport.cgi?bug=1036970
https://github.com/InsightSoftwareConsortium/ITK/issues/4777

Thanks!

Do you have any questions?

hayk.aslanyan@rau.am
https://castech.am/

https://castech.am/

