

Intermediate-Task Transfer Learning: Leveraging Sarcasm Detection for Stance Detection *Gibson Nkhata, Susan Gauch*

The Sixteenth International Conference on Information, Process, and Knowledge Management eKNOW 2024

Presenter: Gibson Nkhata University of Arkansas, USA gnkhata@uark.edu

Presenter Biography

• **Gibson Nkhata** received a Master's degree in Computer Science from the University of Arkansas, USA, in 2022. He is currently a doctoral student in Computer Science at the university. He is also working as a Graduate Research Assistant in the Electrical Engineering and Computer Science (EECS) department under the DART project.

Research Interests

• Our research interest lies in the application of Deep Learning techniques and pre-trained language models in Natural Language Processing (NLP) tasks like Sentiment Analysis, Stance Detection, and rumor veracity detection on social media.

Outline

- Motivation
- Illustrative Example
- Our approach
- Experiments and Results
- Contributions and Conclusion
- Future Work

Motivation

- Stance Detection (SD)
- SD is the automated identification of an individual's stance on a specific topic based solely on their utterance or authored material.
- Stance labels categorize expressions into InFavor (Support), Against, or None.
- Social media platforms provide a vast amount of information on diverse topics fostering SD in social, business, and political applications.
- The inclusion of sarcastic and figurative language in posts drastically impacts the performance of SD models.

Illustrative Example

- "I like girls. They just need to know their place".
 - Comment based on *Feminist Movement*.
 - Sarcastic (Against) comment.
 - But looks positive (*Support*).
- Human evaluator can easily imply its stance but hard for a machine without prior sarcasm knowledge.
- That's why this work proposes sarcasm detection pre-training before SD.

Our approach

- Intermediate-Task Transfer Learning
 - Target Task: SD
 - Intermediate Task: Sarcasm Detection
 - Sarcastic or not sarcastic

Our approach

- Underlying Model Architecture
 - Input layer
 - Embedding layer: BERT or RoBERTa
 - Deep Neural Networks: CNN, BiLSTM, and Dense layer
- Problem formulation
 - Given a tweet *T*, represented as a word sequence (*w*1,*w*2,*w*3, ...*wL*), with *L* denoting the sequence length, predict its stance regarding a given target.
 - Stance labels are categorized as *InFavor* (supporting the target/topic/claim), *Against* (opposing the topic), or *None* (indicating neutrality towards the target).

Experiments

Sarcasm Datasets		SD Datasets	
Name	Size	Name	Size
Sarcasm V2 Corpus (SaV2C)	3,260	SemEval 2016 Task 6A Dataset (SemEval)	4,063
The Self- Annotated Reddit Corpus (SARC)	1.1M	Multi-Perspective Consumer Health Query Data (MPCHI).	1,535
SARCTwitter (ST)	994		

Experimental Settings

Batch size	Seq length	Learning rate	epochs	optimizer	Loss function
16	24	3e-5 to 1e-9, 1e-10	10-50	Adam	Binary cross entropy loss

Results

TABLE II EXPERIMENTAL RESULTS WITHOUT SARCASM DETECTION PRE-TRAINING

Model			Sem	Eval			MPCHI						
	AT	CC	FM	HC	LA	Avg	MMR	SC	EC	VC	HRT	Avg	
Sem-TAN-	0.596	0.420	0.495	0.543	0.603	0.531	0.487	0.505	0.564	0.487	0.467	0.502	
Sem-CNN	0.641	0.445	0.552	0.625	0.604	0.573	0.524	0.252	0.539	0.524	0.539	0.476	
Com-BiLSTM	0.567	0.423	0.508	0.533	0.546	0.515	0.527	0.522	0.471	0.474	0.469	0.493	
ZSSD	0.565	0.389	0.546	0.545	0.509	0.511	-	-	-	-	-	-	
Com-BERT	0.704	0.466	0.627	0.620	0.673	0.618	0.701	0.691	0.710	0.617	0.621	0.668	
ChatGPT	-	-	0.690	0.780	0.593	0.687	-	-	-	-	-	-	
Ours-RoBERTa	0.740	0.775	0.689	0.683	0.696	0.712	0.692	0.687	0.700	0.701	0.698	0.695	
Ours-BERT	0.767	0.755	0.697	0.704	0.702	0.725	0.747	0.722	0.704	0.702	0.732	0.721	

TABLE III EXPERIMENTAL RESULTS WITH SARCASM-DETECTION PRE-TRAINING

Tack	SemEval							MPCHI					
1458	AT	CC	FM	HC	LA	Avg	MMR	SC	EC	VC	HRT	Avg	
SaV2C	0.595	0.718	0.596	0.645	0.578	0.626	0.605	0.545	0.545	0.352	0.495	0.508	
SARC	0.697	0.612	0.683	0.557	0.641	0.638	0.605	0.545	0.545	0.352	0.495	0.508	
ST	0.769	0.800	0.774	0.795	0.741	0.775	0.749	0.727	0.704	0.703	0.739	0.724	

Results

TABLE IV Experimental results of an ablation study

Model	SemEval							MPCHI					
	AT	CC	FM	HC	LA	Avg	MMR	SC	EC	VC	HRT	Avg	
BERT	0.674	0.677	0.678	0.609	0.685	0.665	0.568	0.519	0.441	0.482	0.595	0.521	
BERT+Conv+BiLSTM	0.767	0.755	0.697	0.704	0.702	0.725	0.747	0.722	0.704	0.702	0.732	0.721	
ST+BERT	0.712	0.735	0.698	0.687	0.696	0.706	0.687	0.601	0.540	0.466	0.546	0.568	
ST+BERT+Conv	0.770	0.759	0.689	0.683	0.694	0.719	0.458	0.535	0.479	0.350	0.524	0.469	
ST+BERT+BiLSTM	0.747	0.765	0.675	0.657	0.678	0.704	0.640	0.618	0.573	0.528	0.633	0.598	
ST+BERT+Conv+BiLSTM	0.769	0.800	0.774	0.795	0.741	0.775	0.749	0.727	0.704	0.703	0.739	0.724	

Contributions and Conclusion

- We introduced a transfer-learning framework that leverages sarcasm detection for SD.
- The model underwent separate pre-training on three sarcasm-detection tasks before fine-tuning on two target SD tasks.
- We separately fine-tuned RoBERTa and BERT and sequentially concatenated them with other deep neural networks.
- BERT models gave promising results.
- We established the correlation between sarcasm detection and SD through failure analysis.
- We showed that not every sarcasm-detection intermediate task improved SD due to incongruous linguistic attributes.
- To the best of our knowledge, this is the inaugural exploration of sarcasm-detection pre-training applied to the BERT(RoBERTa)+Conv+BiLSTM architecture before SD finetuning.

Future work

- We will assess variant BERT or RoBERTa embeddings tailored to healthrelated text data.
- We will also concentrate on cross-target SD.
- We will do a more comprehensive examination of other intermediate tasks, including sentiment and emotion knowledge.