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Motivation

• Many dynamic systems experience performance degradation with use or age.


• Altering physical dynamics or constitutive constants.


• Not accounting for these changes in the model can lead to unreliable state 
information. 


• Complications can arise if the true-physical system movement is dependent 
on estimated state information. 
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Model vs. Physical Dynamics

• A model is defined by governing equation(s) of motion (EOM).


• A model could predict dynamics of a true-physical systems under a set of 
assumptions and constrains.


• Example: Euler-Bernoulli Beam Assumes…


•  Small Deflections, low frequency excitation, and no rotary inertia.


• However, the model is not a physical system.
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Let the model and physical 
systems be described as Linear 
Time Invariant (LTI).
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LTI System

• Any LTI system can be described in state space:





• System satisfies superposition and scaling. 

{ ·x = Ax + Bu
y = Cx
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• Plant


• Input

A →

u →

• Input Matrix


• Internal State

B →

x →

• Output Matrix


• External (Output) State

C →

y →



If you have a “good” LTI system, 
internal states can be estimated. 
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Luenberger (State) Observer

• Luenberger (State) Observers dates back to the 
1970s [Luenberger, 1971].


• Requires minimal uncertainty about plant 
dynamics.


• Plant must be Observable (A,C).  

Plant

Observer

Input

Observer 
Gain

Figure 1: Generalized Luenberger Observer 

Control Diagram.
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Kalman Filters 

• Kalman Filters assumes noise exist in the system.


• Noise assumes to follow a gaussian distribution 
with zero mean [Kalman, 1960].


• As with Luenberger, internal states are estimated 
using an iterative process.


• Observer Gain is selected base on estimated and 
measured state confidence.  

Figure 2: Generalized Kalman Filter Diagram.

Plant

Observer

Input

Observer 
Gain

Process 
Noise

Sensor 
Noise
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Background: Model Uncertainty
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Model Uncertainty 

• Model uncertainty is caused by…


• All dynamics are not accounted for inside the EOM. 

• Not knowing the correct constitutive relations.  

• Having process/sensor noise.


• Robustness techniques exist to limit the effects of model uncertainty:


•  Synthesis [Nagpal, 1991]


•  Synthesis [Doyle, 1987]

H∞

μ
12



The proposed control scheme 
can account for model 
uncertainty 
..if uncertainty is inside the dimensions of the model input matrix 
and plant.
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More importantly, the proposed control  
scheme deals with model uncertainty when 
a system experiences a “significant” health 
status change.
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What does accounting for “significant” health 
status change mean?
• With regard to system dynamics, if the “significant” health change can be defined within plant estimation constraint:
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• True-Physical Input Matrix


• Initial Input Matrix Model


• Input Matrix Correction Term

B ∈ sp{BmL1*} ∋ B = BmL1*

B →

Bm →

BmL1* →

• The proposed control scheme will update in time to reflect these changes under specific assumptions and 
constraints.


•  are known. 


•  are stable.

{Am, Bm, C}

{Am, A}




• True-Physical Plant


• Initial Plant Model


• Plant Correction Term

A ∈ sp{Am, BmL2*C} ∋ A = Am + BmL2*C

A →

Am →

BmL2*C →



Inspiration for Model Updating
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• An adaptive unknown input approach to 
brain wave EEG Estimation


• Griffith, Balas, & Hubbard proposed an 
open-loop coupled approached to input 
and state estimation [Griffith 2023]. 
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True PlantInput Generator

Adaptive State Estimator

Adaptive Estimator Law 

Input Estimator

Black Box

Figure 3: Generalized unknown input estimator 

for brain wave estimation.

A Modal Approach to the 
Space-Time Dynamics of 
Cognitive Biomarkers



What if we can send 
information via an input to the 
true system?
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A Control Framework 
for Direct Adaptive 
State & Input Matrix 
Estimation
with Known Inputs for 
LTI Dynamic Systems

True System
Known Input 

Adaptive State Estimator

Adaptive Estimator Law 

Adaptive Input Matrix Law 
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Decomposition of the True System’s Input Matrix and Plant

• Let the true system’s input matrix be composed of the model input matrix  and the correction 
matrix 





• The true plant be composed of the model plant  and the correction matrix  





• Can we determine  





where  is the variance in ?

(Bm)
(L1*)

B ≡ BmL1*

(Am) (L2*)

A ≡ Am + BmL2*C

{L1*, L2*} ∋

L(t) = ΔL + L*
t→∞

L(t) = L*

ΔL L
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Structure of ‘True’ Plant 

• This structure of the ‘true’ plant  can be derived   from: 


.


• Why this form? 

•  gives initial plant structure.


•The input matrix  actuates the system.


•System Output  has state information of the true system.

(A) ∋ A ≡ Am + BmL2*C
Ax = Amx + BmL2*y

= Amx + BmL2*Cx
= (Am + BmL2*C)x

→ A = Am + BmL2*C

Am

(Bm)

(y)
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Adaptive State Estimator 

• Since the true plant and input matrix is unknown and state information is 
often inaccessible.


• An observer-estimator using the reference model plant  can be made:


,


where input  can be any bounded-continuous waveform.

(Am)

Adaptive State Estimator {
· ̂x = Am ̂x + Bm(L1u + L2y)
̂y = C ̂x

(u)
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Error Dynamics
• Allowing the true input matrix  and plant  

be decomposed such that:





• Results in the error dynamics can be written as:


.


• No guarantee that  because of the 

residual terms  in the error 
equation. 

(B) (A)

{B = BmL1*
A = Am + BmL2*C

·ex = Amex + Bm(ΔL1u
⏟

=wu

+ ΔL2y
⏟

=wy

)

̂ey = Cex

ex
t→∞

0
{BmΔL1u, BmΔL2y}
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Figure 4: Partial Adaptive State Estimator. 

True System
Known Input 

Adaptive State Estimator



Lyapunov Analysis
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Lyapunov Stability 

• Why do we care about Lyapunov Stability?


• Lyapunov argument considered dynamic systems in terms of energy-like 
functions.


• In this case, we are considering the energy rate of change for the error state 
to guarantee .


• If error energy can be dissipated, estimated state converges to the true 
state. 

ex
t→∞

0
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• Lyapunov analysis results in the adaptive estimation 
law:


  .


  .


• Proof guarantees  and  asymptotically.


•  are guaranteed to bounded. 


•  No guarantee .


• If  numerically, the dynamics of 
the true plant can be been captured. [Fuentes, 2025].

Δ ·L1 = ·L1 = − ̂eyu†γu; γu > 0

Δ ·L2 = ·L2 = − ̂eyy†γy; γy > 0

ex
t→∞

0 ̂ey
t→∞

0

{ΔL1, ΔL2}

{ΔL1, ΔL2}
t→∞

0

{ΔL1, ΔL2}
t→∞

0

Lyapunov Proof Results 
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Figure 5: Adaptive State and Input Matrix Estimator.

 = conjugate transpose( ⋅ )†

True System
Known Input 

Adaptive State Estimator

Adaptive Estimator Law 

Adaptive Input Matrix Law 



• Given the following error system:


.


• Lyapunov analysis results in the 
adaptive estimation law:


  .


  .


{
·ex = (Am − KC)ex + Bm(wu + wy)
̂ey = Cex

Δ ·L1 = ·L1 = − ̂eyu†γu; γu > 0

Δ ·L2 = ·L2 = − ̂eyy†γy; γy > 0
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Figure 6: Adaptive State Estimator using a Fixed Gain .(K)

WLOG - Use of Fixed Gains 
True System

Known Input 

Adaptive State Estimator

Adaptive Estimator Law 

Adaptive Input Matrix Law 



Illustrative Example
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Defining the Dynamics
• With appropriate modeling, let a reference model and plant  exist 


; .


• For the proposed control approach to be viable, allow:  &
:


 ; .

(Am) ∋

Reference Model {
·xm = Amxm + Bmu
ym = Cxm

Am = [
−7 2 4
−2 −1 2
−2 2 −1]; Bm = [

0
0.7
2 ]; C = [0.5 0 1]

B ∈ sp{BmL1*} ∋ B = BmL1*
A ∈ sp{Am, BmL2*C} ∋ A = Am + BmL2*C

True System { ·x = Ax + Bu
y = Cx A = Am + BL2*C = [

−7 2 4
−3.75 −1 −1.5

−7 2 −11]; B = [
0

1.4
4 ]; C = [0.5 0 1]
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• Giving a unit input response to the 
True and Reference model, notice the 
significant difference in output 
response. 








True System { ·x = Ax + Bu
y = Cx

Reference Model {
·xm = Amxm + Bmu
ym = Cxm

System Response
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Figure 7: Output response for the true model  and reference model 

given a unit step input .
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• Any bounded-continuous input 
 can be injected into the True 

and Estimator systems, proof 
guarantees  and 

 asymptotically.


• Lets define the known input as: 


(u)

ex
t→∞

0
̂ey

t→∞
0

u = 2 + sin(2t)

Selecting Input
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Figure 8: Adaptive State Estimator.

True System
Known Input 

Adaptive State Estimator

Adaptive Estimator Law 

Adaptive Input Matrix Law 



Applying Adaptive State Estimator

Figure 9: Internal State Error.

Figure 10: Adaptive Input Matrix Gain Numerically Converging 
.(L1(t)

t→∞
L1*) ∋ BmL1(t)C

t→∞
BmL1* = B

Figure 11: Adaptive Gain Numerically Converging 


.

(L2(t)
t→∞

L2*)

∋ Am + BL2(t)C
t→∞

Am + BL2*C = A
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Applying Adaptive State Estimator

Figure 9: Internal State Error.
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Figure 12: External State Response.



Conclusion
• Given  are known and the true input 

matrix and plant dynamics follows:





• Stability proof guarantees:


•  and  asymptotically.


•  is guaranteed to bounded. 


• If  numerically, the 
dynamics of the true input matrix and plant 
or energy equivalence has be been captured.

{Am, Bm, C}

B ∈ sp{BmL1*} ∋ B = BmL1*
A ∈ sp{Am, BmL2*C} ∋ A = Am + BmL2*C

ex
t→∞

0 ̂ey
t→∞

0

{ΔL1, ΔL2}

{ΔL1, ΔL2}
t→∞

0
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Figure 13: Adaptive State and Input Matrix Estimator.
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Adaptive Input Matrix Law 



Thank you!
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Appendix 
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 SynthesisH∞

•  Synthesis is a robust controller that uses optimization techniques to 
determine gains.


• In practice, control gain are calculated based on the selected input signals 
the controller has access to. 


• Controller will be optimal relative to the cost function and prescribed input 
signals. Need not mean controller is optimal for the entire system. 


• Depending on the amount of model uncertainty,  Synthesis could produce 
a unstable response.

H∞

H∞



 Synthesisμ

•  Synthesis is an extension of  Synthesis.


• The main difference,  Synthesis account for model uncertainty. 


• In practice,  Synthesis is ran iteratively until nominal controller is found. 


• Then, the robustness of the controller is tested and assigned a score. 


•  Depending on model uncertainty, cycle is repeated until robustness score 
is minimized. 

μ H∞

μ

H∞





Defining Error

• To determine the difference between the model and true system, consider the following state and output 
error equations





• Take the time derivative of  and plug in error dynamics to determine error convergence


 

{
ex = ̂x − x
̂ey = Cex = C( ̂x − x) = ̂y − y

ex

·ex = · ̂x − ·x = Am ̂x + B(u + Ly) − (Ax + Bu)
= Am ̂x + B(ΔL + L*)y − (Am + BL*C

A

)x

= Amex + B ΔLy
⏟

wx
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Error Dynamics

• Therefore, the state error dynamics can be 
written as 





• No guarantee that  because of the 

residual term  in the error equation. 


• An additional argument is needed to 
remove the residual term  

{
·ex = Amex + Bwx

̂ey = Cex

ex
t→∞

0
(Bwx)

(Bwx)

43
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Lyapunov Stability 

• Why do we care?


• Lyapunov argument considered dynamic system’s in terms of energy-like 
functions


• In this case, we are considering the energy rate of change for the error state 
to guarantee  


• If error energy is removed, estimator converges to the true plant and 
state. 

ex
t→∞

0
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Lyapunov Function for the Error System

• Given the following error system





• Assuming real scalars, consider the following Lyapunov function


 


• Where  acts as the energy-like function for the error system.  

{
·ex = Amex + Bwx

̂ey = Cex

Ve(ex) =
1
2

e†
x Pxex; Px > 0

Ve(ex)
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Lyapunov Error Dynamics

• To determine the energy-like rate of change, take the time derivative of 

 and plugging in error dynamics


 

Ve(ex) =
1
2

e†
x Pxex

2 ·Ve = ·e†
xPxex + e†

x Px
·ex

= (Amex + Bwx)†Pxex + e†
x Px(Amex + Bwx)

= e†
x (A†

mPx + PxAm)ex + 2e†
x PxBwx
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Lyapunov Error Dynamics cont. 

• From the SPR condition,





•  becomes


SPR Condition {A†
mPx + PxAm < − Qx

PxB = C†

·Ve(ex)

2 ·Ve = e†
x (A†

mPx + PxAm

−Qx

)ex + 2e†
x PxB⏟

C†

wx

= − e†
x Qxex + 2 e†

x C†

⏟
̂e†
y

wx

= − e†
x Qxex + 2 ( ̂ey, wx)

(wx, ̂ey)
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Lyapunov Error Dynamics Cont. 

• The resulting energy-like rate of change Lyapunov Function for the error 
system becomes 





• Removing the residual  term in the above equation will cause 

·Ve = −
1
2

e*x Qxex + ( ̂ey, wx); Q > 0

( ̂ey, wx) ·Ve ≤ 0
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Creating an Additional “Outlet” 

• To remove the residual  term, consider another energy-like function 





• To determine energy-like rate of change, take the time derivative of 


( ̂ey, wx)

VL(ΔL) =
1
2

tr(ΔLγ−1
y ΔL†); γy > 0

VL(ΔL)
·VL(ΔL) = tr(Δ ·Lγ−1

y ΔL†)
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Creating an Additional “Outlet” cont. 

• Lets define   and plug into 
Δ ·L = − ̂eyy†γy
·VL(ΔL)

·VL(ΔL) = tr(− ̂eyy†γy

Δ ·L

γ−1
y ΔL†)

= tr(− ̂ey y†ΔL†

w†
x

)

= −tr(w†
x ̂ey) = − w†

x ̂ey

= − (wx, ̂ey) = − ( ̂ey, wx)
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Combining Lyapunov Functions

• The closed loop energy-like Lyapunov Functions function can be written as





• Closed loop time energy-like time derivative Lyapunov Function can be written as 





•  are bounded, but does not guarantee  because of the 

negative-semi-definite nature of .

VeL = Ve(ex) + VL(ΔL) =
1
2

e†
x Pxex +

1
2

tr(ΔLγ−1
y ΔL†)

·VeL = ·Ve(ex) + ·VL(ΔL) = −
1
2

e†
x Qxex + ( ̂ey, wx) − ( ̂ey, wx)

= −
1
2

e†
x Qxex ≤ 0

∴ ·VeL(ex, ΔL) ≤ 0 ⇒ {ex, ΔL} ex
t→∞

0
·VeL

51



Barbalat-Lyapunov
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Barbalat-Lyapunov

• Given these three condition


1.  is lower bounded


2.  is negative semi-definite


3.  is uniformly continuous in time


Then . 


• The first two conditions are satisfied from the previous derivation. 

V
·V
·V

·V
t→∞

0
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Uniformly Continuous  

• Recall , now consider   





• Taking the time derivative of  and plugging in the error dynamics 





• From previous result,  is bounded. 


• For  to be bounded, the output  must be bounded. 


• Output response will be bounded for any stable plant by showing global exponential stability for the internal states 


•  By definition, if  is bounded, then  is uniformly continuous. 

·VeL = −
1
2

e†
x Qxex ≤ 0 WeL ∋ WeL ⊆ ·VeL

WeL = e†
x Qxex

WeL
·WeL = e†

x Qx
·ex

= e†
x Qx(Amex + BΔLy)

{ex, ΔL}
·WeL (y)

·WeL WeL
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Satisfying Barbalot-Lyapunov

• Ensures 


• Guarantees  and  asymptotically. 


• Does not guarantee 


• However, if , the dynamics of the true plant have been captured 
or some minimal error equivalence. 

·VeL
t→∞

0

ex
t→∞

0 ̂ey
t→∞

0

ΔL
t→∞

0

ΔL
t→∞

0
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