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● Type 1 Diabetes Mellitus (T1DM) - a chronic

condition when the pancreas fails to produce

insulin

● Eighth leading cause of death and have been

approximated to increase by 13.5 - 17.4 million

people

● Fluctuations in managing blood sugar is

challenging and can be deadly if not handled

promptly

● Continuous Glucose Monitors (CGM) are

used to measure the blood glucose levels

continuously throughout the day

● Machine Learning (ML) can be used to

evaluate closed loop insulin delivery system

(CGMS combined with insulin pumps) and

manage effectiveness, safety, and

personalization for T1DM individuals 3

Introduction
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Related Work

ML for Blood Glucose Prediction

● Previous studies used SVR, ANN,

LSTM, and RNN for forecasting.

● Deep learning models don’t always

outperform simpler models.

Closed-Loop Insulin Delivery

● CGM + insulin pumps improve

glycemic control.

● Artificial pancreas systems automate

insulin dosing.

Challenges in Prior Studies

● Small, non-diverse datasets limit generalizability.

● Short-term trends analyzed, missing long-term patterns.

● Handling missing data remains a key issue.

How This Study Differs

● Personalized models instead of generalized approaches.

● KNN, RF, and MLP tested for accuracy & interpretability.

● Hyperparameter tuning improved individual glucose

predictions.



Prediction: ML models can accurately predict short-term blood glucose levels, improving management

strategies for T1DM.

Key Focus: Identifying the best-performing algorithm among K-Nearest Neighbors (KNN), Random Forest

(RF), and Multilayer Perceptron (MLP).

Research Question: Can analyzing CGM data to develop a method to fine-tune insulin rates using various

ML models improve T1DM management strategies? Do these models need to be personalized, or can a

uniform model be effective?
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Hypothesis



Dataset: Diatrend dataset (31 days, 5 subjects).

Preprocessing: Feature extraction (glucose mean, standard

deviation, insulin infusion rate), handling missing values, and

structuring data into time-series sequences.

Models Tested:

● KNN: Captures local data trends.

● RF: Handles complex, non-linear patterns with high

interpretability.

● MLP: A neural network for deep learning-based

prediction.

Training Strategy: 70% training, 15% validation, 15% test data

split.

Evaluation Metrics: Mean Squared Error (MSE), Root Mean

Squared Error (RMSE), and R².
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Methods & procedures



● Optimized models for each subject through extensive

hyperparameter tuning.

● Evaluated performance across subjects to determine the

most reliable model.

● RF and MLP outperformed KNN.

● RF achieved the highest R² scores for Subjects 52 and 54,

demonstrating strong predictive performance.

● MLP performed best for Subjects 29, 38, and 46,

capturing complex glucose trends effectively.

● KNN consistently underperformed, indicating limitations

in handling glucose variability.

● Best-tuned models were visualized through graphs,

showing the impact of different hyperparameter values.

● Performance metrics were organized into tables,

comparing MSE, RMSE, and R² scores across subjects.
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Data Analysis
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Graphs

Subject 29 MLP Graph Subject 38 MLP Graph
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Graphs cont.

Subject 46 MLP Graph Subject 52 RF Graph
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Graphs cont.

Subject 54 RF Graph



● RF achieved the lowest RMSE (14.98 - 23.62 mg/dL) across all subjects.

● Subject-specific models outperformed a uniform model, proving the need for personalized predictions.

● Errors within ±30 mg/dL indicate practical feasibility for real-world diabetes management.

● RF outperformed other models due to its ability to handle non-linear relationships and high data

variability in blood glucose levels.

● Established a foundation for an optimal blood glucose prediction system using supervised machine

learning.

● Models achieved significant predictive performance, validating their effectiveness in forecasting glucose

levels.

● Demonstrated the potential of ML-based personalized glucose prediction to improve T1DM

management strategies.
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Results/Conclusions



● Extend the study with more diverse subjects to improve generalizability and model robustness.

● Explore advanced deep learning models, such as LSTMs and Transformer-based architectures, to

capture longer temporal patterns in blood glucose trends.

● Integrate models into CGM-insulin pump systems for real-world clinical validation and improved

automation in diabetes management.

● Enhance interpretability by incorporating SHAP values to better understand feature importance in

predictions.

● Expand dataset collection beyond 31 days to account for seasonal, dietary, and behavioral variations.

● Develop a hybrid approach combining ML models to leverage strengths from both traditional and

deep learning techniques.
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Future Research
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Type-1 Diabetes Mellitus (T1DM) is a chronic condition characterized by the pancreas’s inability
to produce insulin, requiring continuous monitoring and management of blood glucose levels.
Accurate prediction of blood glucose levels can significantly improve patient outcomes by
reducing hypo- and hyperglycemic events. This study develops a personalized automated blood
glucose forecasting system leveraging the past blood glucose levels and insulin pump data.
Utilizing the publicly available Diatrend dataset, encompassing thirty-one days of data for five
subjects, we evaluated three machine learning algorithms: K-Nearest Neighbors (KNN), Random
Forest (RF), and Multilayer Perceptron (MLP). After hyper-parameter tuning, the performance of
each algorithm was assessed using Root Mean Squared Error (RMSE), Mean Squared Error
(MSE), and the coefficient of determination (R2), with a particular emphasis on RMSE. The
Random Forest model demonstrated superior performance, achieving a test RMSE range of
14.98−23.62 across all subjects. This research highlights the efficacy of supervised machine
learning algorithms in predicting blood glucose levels over one-hour intervals for T1DM
patients, underscoring the potential of personalized machine learning models to improve diabetes
management.
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