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Type 1 Diabetes M éllitus (T1DM) - achronic
condition when the pancreasfails to produce
insulin

Eighth leading cause of death and have been
approximated to increase by 13.5- 17.4 million
people

Fluctuations in managing blood sugar is
challenging and can be deadly if not handled
promptly

Continuous Glucose Monitors (CGM) are
used to measure the blood glucose levels
continuously throughout the day

Machine Learning (ML) can be used to
evaluate closed loop insulin delivery system
(CGM S combined with insulin pumps) and
manage effectiveness, safety, and
personalization for TIDM individuals




ML for Blood Glucose Prediction

e Previousstudiesused SVR, ANN,
LSTM, and RNN for forecasting.

e Deep learning models don't always
outperform simpler models.

Closed-L oop Insulin Delivery

e CGM +insulin pumpsimprove
glycemic control.

e Artificial pancreas systems automate
insulin dosing.

Challengesin Prior Studies

e Small, non-diverse datasets limit gener alizability.
e Short-term trends analyzed, missing long-term patterns.
e Handling missing data remains akey issue.

How This Study Differs

Per sonalized modelsinstead of generalized approaches.
KNN, RF, and MLP tested for accuracy & inter pretability.
Hyper parameter tuning improved individual glucose
predictions.



Prediction: ML models can accurately predict short-term blood glucose levels, improving management
strategiesfor T1DM.

Key Focus: Identifying the best-performing algorithm among K -Near est Neighbor s (KNN), Random For est
(RF), and Multilayer Perceptron (MLP).

Resear ch Question: Can analyzing CGM data to develop a method to fine-tune insulin rates using various
ML modelsimprove TIDM management strategies? Do these models need to be per sonalized, or can a
uniform model be effective?



Dataset: Diatrend dataset (31 days, 5 subjects).

Preprocessing: Feature extraction (glucose mean, standard
deviation, insulin infusion rate), handling missing values, and
structuring datainto time-series sequences.

M odels Tested:

KNN: Captureslocal data trends.
RF: Handles complex, non-linear patterns with high
inter pretability.

e MLP: A neural network for deep learning-based
prediction.

Training Strategy: 70% training, 15% validation, 15% test data
split.

Evaluation Metrics: Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), and R2.
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Optimized models for each subject through extensive
hyper parameter tuning.

Evaluated perfor mance across subjectsto determine the
most reliable model.

RF and ML P outperformed KNN.

RF achieved the highest R? scor es for Subjects 52 and 54,
demonstrating strong predictive performance.

MLP performed best for Subjects 29, 38, and 46,
capturing complex glucose trends effectively.

K NN consistently under per for med, indicating limitations
in handling glucose variability.

Best-tuned modelswer e visualized through graphs,
showing the impact of different hyperparameter values.
Performance metricswer e or ganized into tables,
comparing M SE, RM SE, and R?2 scor es across subjects.

TABLE 1. TRAINING RESULTS FOR DIFFERENT SUB-
JECTS AND MODELS

D KNN RF MLP

52 MSE: 252947 MSE: 227.535 MSE: 317.137
RMSE: 15.904 RMSE: 15.084 RMSE: 17.808
R2 Score: 0912 R2 Score: (.921 R2 Score: 0.890

29 MSE: 438.806 MSE: 425.273 MSE: 420.411
RMSE: 20947 RMSE: 20.622 RMSE: 20.503
R2 Score: 0.857 R2 Score: (.861 R2 Score: 0.863

46 MSE: 814.730 MSE: 717.231 MSE: 820.608
RMSE: 28.543 RMSE: 26.781 RMSE: 28.646
R2 Score: 0.880 | R2 Score: 0.895 | R2 Score: 0.879

38 MSE: 317.208 MSE: 310727 MSE: 301.532
RMSE: 17.810 RMSE: 17.627 RMSE: 17.364
R2 Score: 0.866 | R2 Score: 0.869 | R2 Score: 0.873

54 MSE: 342,127 MSE: 299.137 MSE: 375.030
RMSE: 18.496 RMSE: 17.295 RMSE: 19.365
R2 Score: 0.772 | R2 Score: 0.800 | R2 Score: 0.750

TABLE II. TESTING RESULTS FOR DIFFERENT SUB-
JECTS AND MODELS

1D KNN RF MLP

52 MSE: 314.087 MSE: 305.725 MSE: 378.007
RMSE: 17.722 RMSE: 17.484 RMSE: 19.442
R2 Score: 0926 | R2 Score: 0.928 | R2 Score: 0911

29 MSE: 414.655 MSE: 391.740 MSE: 385.436
RMSE: 20.363 RMSE: 19.792 RMSE: 19.632
R2 Score: 0.880 | R2 Score: 0.886 | R2 Score: (.888

D MSE: 615.205 MSE: 558.373 MSE: 546.354
RMSE: 24.803 RMSE: 23.629 RMSE: 23.374
R2 Score: 0922 | R2 Score: 0.929 | R2 Score: 0.931

38 MSE: 352.870 MSE: 340414 MSE: 330.102
RMSE: 18.784 RMSE: 18.450 RMSE: 18.168
R2 Score: 0.800 | R2 Score: 0.807 | R2 Score: 0.813

54 MSE: 235.849 MSE: 224.320 MSE: 293.482
RMSE: 15.357 RMSE: 14977 RMSE: 17.131
R2 Score: 0.789 R2 Score: 0.800 | R2 Score: 0.738
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RF achieved the lowest RM SE (14.98 - 23.62 mg/dL ) across all subjects.
Subj ect-specific models outper formed a uniform model, proving the need for per sonalized predictions.
Errorswithin £30 mg/dL indicate practical feasibility for real-world diabetes management.
RF outperformed other models due to its ability to handle non-linear relationships and high data
variability in blood glucose levels.
e Established a foundation for an optimal blood glucose prediction system using supervised machine
lear ning.
e Modelsachieved significant predictive performance, validating their effectivenessin for ecasting glucose
levels.
e Demonstrated the potential of ML -based personalized glucose prediction to improve T1DM
management strategies. TABLE 111 TESTING RESULTS FOR SUBJECTS ON BEST
MODEL

1D RMSE

52 | RMSE: 31.300
29 | RMSE: 22.552
46 | RMSE: 43.736
38 | RMSE: 18.716
54 | RMSE: 14977 11




Extend the study with mor e diver se subjects to improve gener alizability and model robustness.
Explore advanced deep learning models, such asL STM s and Transfor mer -based ar chitectures, to
capture longer temporal patternsin blood glucose trends.

e Integrate modelsinto CGM-insulin pump systems for real-world clinical validation and improved
automation in diabetes management.

e Enhanceinterpretability by incorporating SHAP values to better understand featureimportancein
predictions.
Expand dataset collection beyond 31 days to account for seasonal, dietary, and behavioral variations.
Develop a hybrid approach combining ML models to leverage strengths from both traditional and
deep Iearninmgw:tgcmiqu&.
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Type-1 Diabetes Mellitus (T1DM) is a chronic condition characterized by the pancreas’ sinability
to produce insulin, requiring continuous monitoring and management of blood glucose levels.
Accurate prediction of blood glucose levels can significantly improve patient outcomes by
reducing hypo- and hyperglycemic events. This study devel ops a personalized automated blood
glucose forecasting system leveraging the past blood glucose levels and insulin pump data.
Utilizing the publicly available Diatrend dataset, encompassing thirty-one days of datafor five
subjects, we evaluated three machine learning algorithms. K-Nearest Neighbors (KNN), Random
Forest (RF), and Multilayer Perceptron (MLP). After hyper-parameter tuning, the performance of
each algorithm was assessed using Root Mean Squared Error (RMSE), Mean Squared Error
(MSE), and the coefficient of determination (R2), with a particular emphasis on RMSE. The
Random Forest model demonstrated superior performance, achieving atest RM SE range of
14.98-23.62 across all subjects. This research highlights the efficacy of supervised machine
learning algorithms in predicting blood glucose levels over one-hour intervalsfor TIDM

patients, underscoring the potential of personalized machine learning models to improve diabetes

management.
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