

Advanced Urinary Metabolomics for Noninvasive Cancer Screening via SERS-Based Sensing Platforms

Min-Young Lee

(contact e-mail : myay0615@kims.re.kr) Department of Advanced Bio and Healthcare Materials Research Division, Korea Institute of Materials Science (KIMS), Gyeongsangnamdo, 51508, Republic of Korea

1. Background of Metabolomics for Cancer Diagnosis

- **2. Part 1.** Fingerprinting analysis of urinary metabolites using surfacecarbonized silver nanowires on a filter membrane
- **3. Part 2.** Enhancing the identification of pancreatic cancer through surface-enhanced Raman scattering of electro-chemically separated urine components

4. Conclusion

Metabolomics for Cancer Diagnosis

Genomics

-40,000 genes

Transcriptomics

Proteomics

Metabolites

~1000,000 proteins

~3000 compounds

~150,000 transcripts

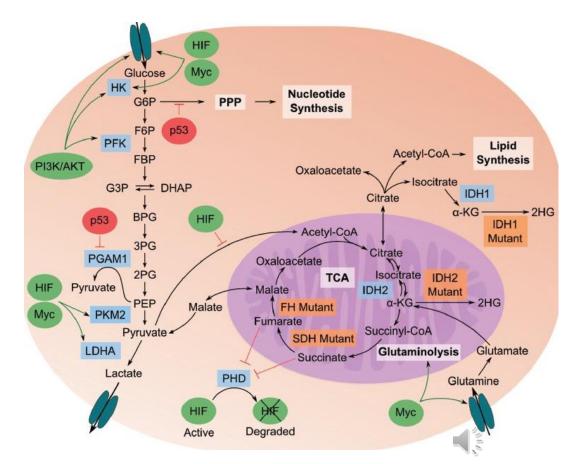
Mostly unknown

Mostly known

Environmental influence

Advantages of metabolomics over other omics

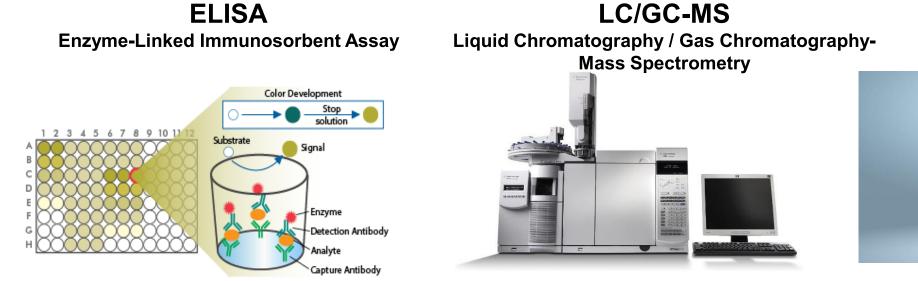
DNA


RNA

Protein

Metabolites

DAND


Tumor metabolome

Oncotarget. 2017; 8:115774-115786 [Ref 1]

Journal of Carcinogenesis. 2013, **12** (9): 9 [Ref 2]

Conventional metabolite measurement techniques

NMR Nuclear Magnetic Resonance

- Disadvantages:
 - Relatively long measurement time
 - Expensive equipment
 - Artifacts due to ionization and other factors

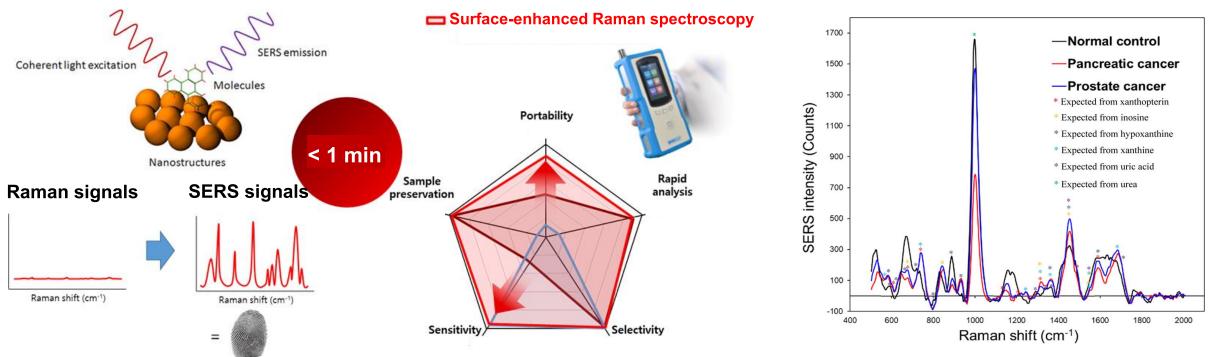
analytical chemistry

NMR-Guided Mass Spectrometry for Absolute Quantitation of Human Blood Metabolites

G. A. Nagana Gowda^{*†}, Danijel Djukovic[†], Lisa Fan Bettcher[†], Haiwei Gu[†], and Daniel Raftery^{*†‡§}

View Author Information ~

♥ Cite this: Anal. Chem. 2018, 90, 3, 2001–2009
 Publication Date: January 2, 2018 ∨
 https://doi.org/10.1021/acs.analchem.7b04089
 Copyright © 2018 American Chemical Society
 RIGHTS & PERMISSIONS
 ✓ Subscribed



SERS-based metabolite analysis for cancer diagnosis

SERS-based Metabolite Analysis

- Label-Free Fingerprinting

Spectral Overlap Issues in body fluids

- SERS enables rapid, sensitive, and non-destructive detection of molecular fingerprints using portable, plasmonenhanced systems.
- But, body fluids contain numerous components → complex, overlapping spectra
- Low signals of disease-related metabolite → need for a platform that enables discrimination of metabolite signals

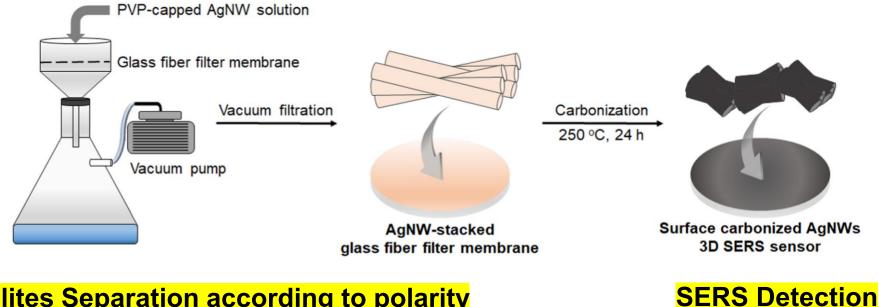
PART 1.

Fingerprinting analysis of urinary metabolites using surface-carbonized silver nanowires on a filter membrane/

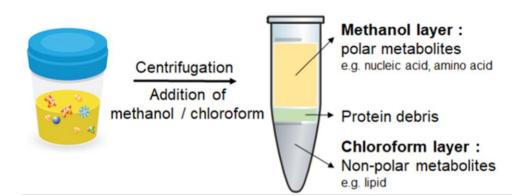
Clinical Characteristics

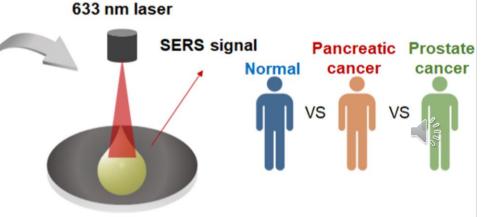
Group	Number	Age	Gender (M:F)	CA 19-9 (U/mL)		PSA (ng/mL)	
				>37	≤37	>2.5 (>4.0)	≤2.5 (≤4.0)
Normal Control	56	55.2±11.3	36:20	56	0	<mark>36 (36</mark>)	0(0)
Pancreatic Cancer	40	70.5±6.5	19:21	25	15	_	
Prostate Cancer	36	66.4±6.4	36:0	_		35 (26)	1 (9)
Total	132	64.0±11.1	91:41				

* Stage number of pancreatic cancer patients.


0 stage (n=5); 1A stage (n=6); 1B stage (n=11); 2A stage (n=1); 2B stage (n=10); 3 stage (n=7).

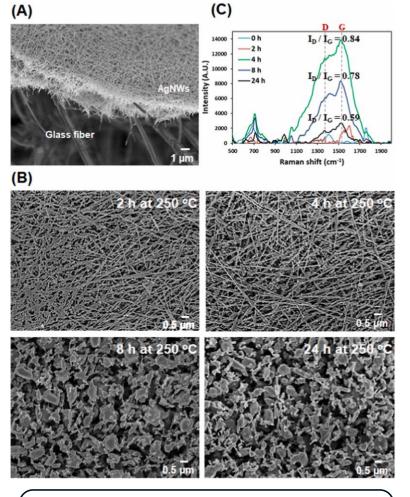
* Stage number of prostate cancer patients.


2 stage (n=23) and 3A stage (n=13).

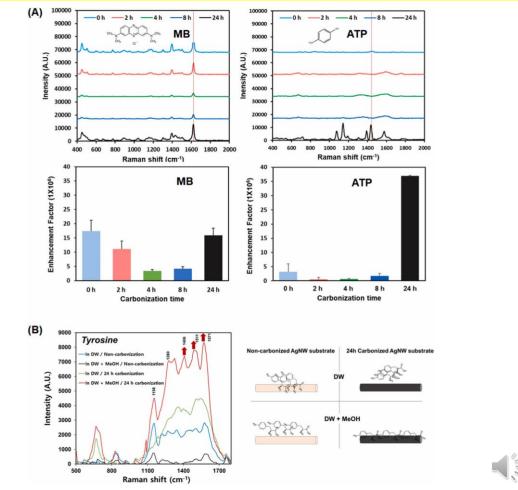

Fabrication of Surface-Carbonized 3D SERS Sensor

Fabrication of 3D SERS Sensor

Urine metabolites Separation according to polarity

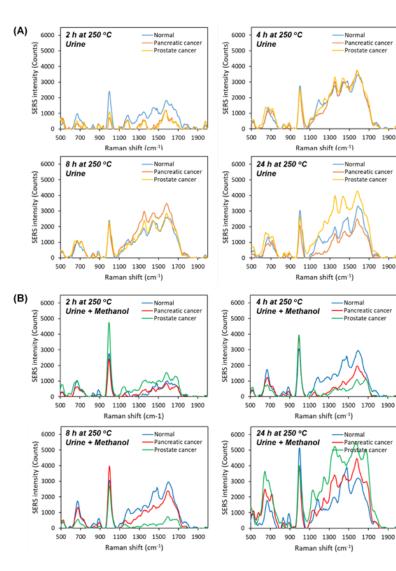


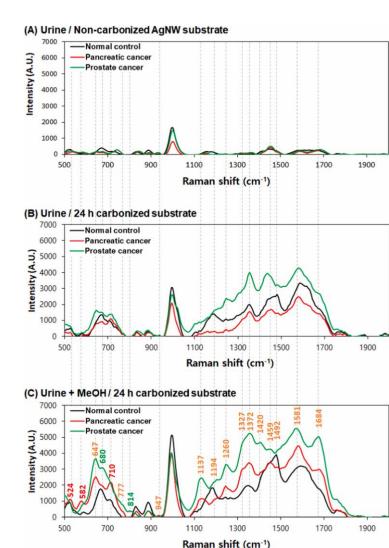
Anal Chim Aca. 2024; **1292**:342233 [Ref 3]

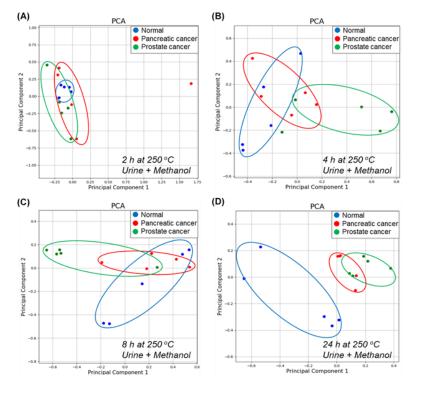

Characteristics of Surface-Carbonized 3D SERS Sensor

Characteristics of 3D SERS Sensor

Carbonization of surface stabilizers & deformation of silver nanowires

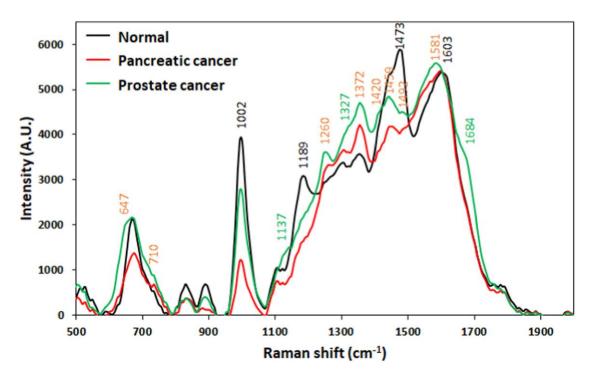

Aromatic Molecules on Carbonized SERS Sensor



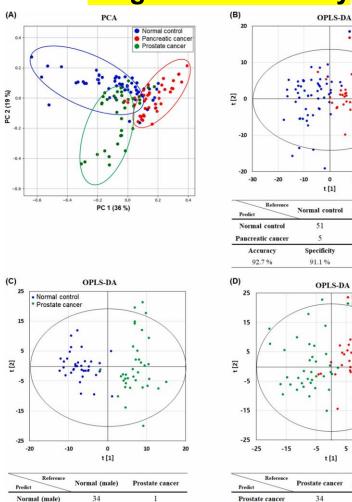

Enhancement of SERS signals of hydrophobic molecules depending on surface hydrophobicity

SERS Spectra of Urine Samples

SERS Spectra According to Sensor Surface Carbonization and Pretreatment method of Urine



Changes in SERS signals of urine from cancer patients depending on surface hydrophobicity


Diagnostic Accuracy for Pancreatic and Prostate Cancer

Pancreatic Cancer vs Prostate Cancer vs Normal Control

	Pancreatic Cancer vs Normal	Prostate Cancer vs Normal	Pancreatic vs Prostate Cancer
Sensitivity	95%	97.2%	94.4%
Specificity	91.1%	94.4%	90%

Diagnostic Accuracy

2

Specificity

94.4 %

Prostate cance Accuracy

95.8 %

35

Sensitivity

97.2 %

Reference Predict	Prostate cancer	Pancreatic cancer
Prostate cancer	34	4
Pancreatic cancer	2	36
Accuracy	Specificity	Sensitivity
92.1%	94.4 %	90 %

Normal control

10 20

Pancreatic cance

38

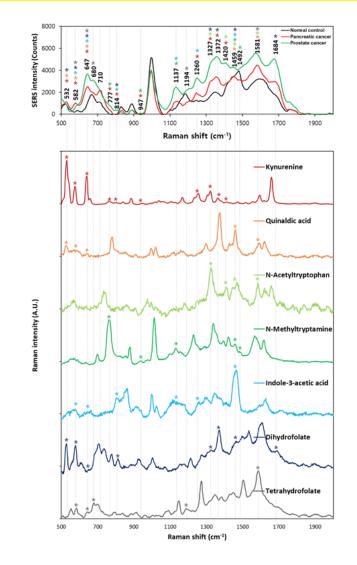
Sensitivity

95%

Pancreatic cance

· Prostate cancer

N N


25

5

Pancreatic cance

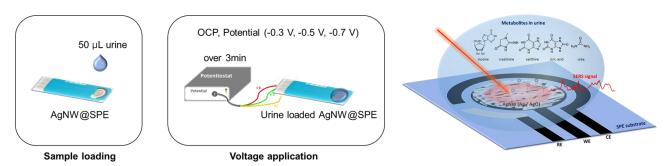
SERS Spectra Comparison of Aromatic Metabolites

Expected Metabolites for Pancreatic and Prostate Cancer

(A)

(B)

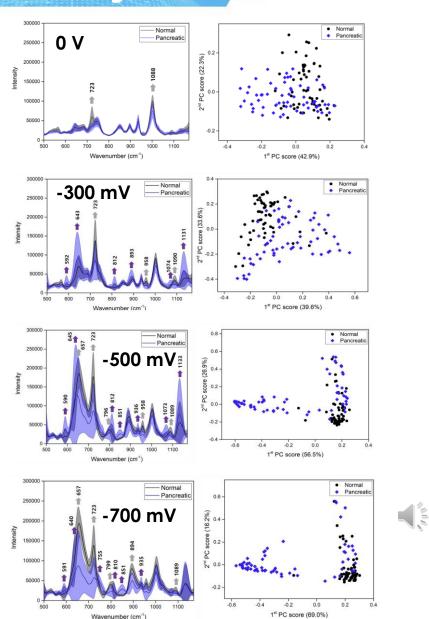
Table 1. Aromatic metabolites expected to exhibit elevated levels in the urine of patients with cancer.

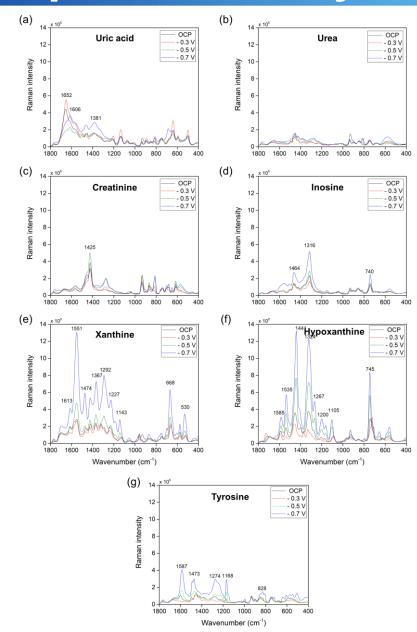

Classification	Metabolite	Structure	Matched Raman peaks (cm ⁻¹) of cancer patients	
Tryptophan metabolites	Kynurenine	C Ang CH	532, 582, 647, 777, 814, 947, 1260, 1327 1372 1420	
	Quinaldic acid	∽t.	532, 582, 647, 1459, <mark>1</mark> 581	
	N-Acetyltryptophan	Contraction of the second	1327, 1420, 1459, 1581	
	N- Methyltryptamine	qr#	777, 947, 1137, 1459, 1492	
	Indole-3-acetic acid		582, 647, 814, 1137, 1260, <mark>1</mark> 459	
Folate metabolites Dihydrofolate 532, 582, 6		532, 582, 647, 814, 1327, 1372, 1459, 1684		
	Tetrahydrofolate		582, 647, 680, 1194, 1581	

PART 2.

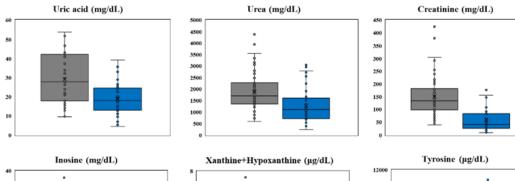
Enhancing the identification of pancreatic cancer through surface enhanced Raman scattering of electro-chemically separated urine components

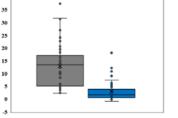
Electrochemical(EC)-SERS Sensor for Urine analysis

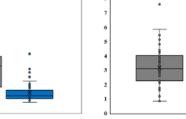

EC-SERS Sensor for Separated Urine metabolites

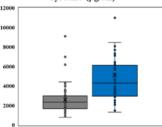

Sensitivity and Specificity Based on Applied Potential

	Accuracy	Sensitivity	Specificity
OCP	85.7 %	91.9 %	78.9 %
300	91.6 %	93.5 %	89.5 %
500	91.6 %	93.5 %	89.5 %
700	92.4 %	90.3 %	94.7 %

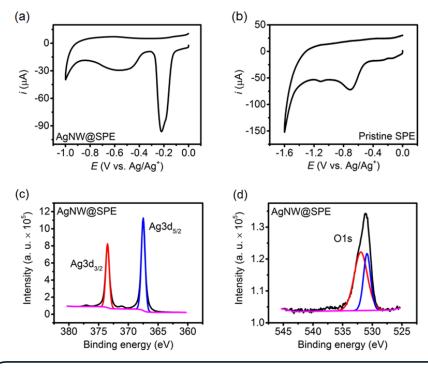

Best pancreatic cancer diagnostic accuracy at -700 mV



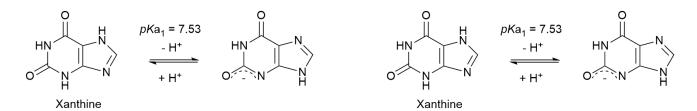

SERS Spectra of Urinary Metabolites



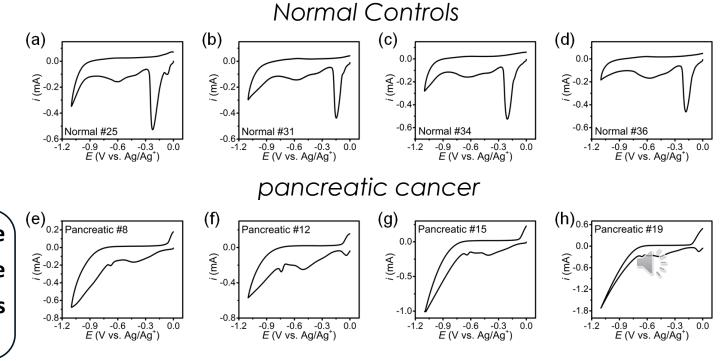
Metabolites Quantification by ELISA



Related Metabolite Levels in Urine of Pancreatic Cancer Patients Decreased: Uric acid, Urea, Creatinine, Inosine, Xanthine, Hypoxanthine **Increased:** Tyrosine


Mechanistic Analysis of EC-SERS Diagnostics

Cyclic Voltammetrys of only a 0.1 M NaNO3 solution



In pancreatic cancer patients, silver nanowire oxidation is inhibited due to specific molecule adsorption, suggesting xanthine adsorption is blocked.

Ionization equilibria and the corresponding pKa values

Cyclic Voltammetry of normal and pancreatic cancer

The surface property changes of the SERS substrate or the applied voltage for SERS facilitated metabolite separation and adsorption in urine, maximizing the differences in label-free SERS spectra of urine metabolites for early pancreatic cancer diagnosis, which is challenging to detect. This approach enhanced diagnostic sensitivity and specificity to over 90% in both patient and control groups.

- Future Work
- 1) Expanded Clinical Validation : Further validation of the SERS-based diagnostic platform using a larger and more diverse patient cohort to assess its robustness and accuracy across different stages of pancreatic cancer.
- 2) Application to Other Cancers: Exploration of the potential of this method for early detection and diagnosis of other difficult-to-diagnose cancers, such as liver or ovarian cancer, through urine metabolite profiling.
- **3)** Longitudinal Studies : Conducting longitudinal studies to monitor changes in urine metabolite profiles over time, providing insights into disease progression and response to treatment.

References

[1] Yu L, Li K, Zhang X. "Next-generation metabolomics in lung cancer diagnosis, treatment and precision medicine: mini review," Oncotarget., vol. 8(70), pp.115774-115786, Nov.2017, doi: 10.18632/oncotarget.22404.

[2] Vermeersch KA, Styczynski MP. "Applications of metabolomics in cancer research," J Carcinog. Vol. 12, pp. 9, Jun.2013, doi: 10.4103/1477-3163.113622.

[3] Yu HJ, Jang E, Woo A, Han IW, Jeon HG, Linh VTN, Park SG, Jung HS, Lee MY. "Cancer screening through surface-enhanced Raman spectroscopy fingerprinting analysis of urinary metabolites using surface-carbonized silver nanowires on a filter membrane," Anal Chim Acta. Vol. 1292, pp. 342233, Mar 2024, doi: 10.1016/j.aca.2024.342233.

٩.5