
AURORA
An Automated Database Schema Change 

Logging System

Bradley Camilleri
Joseph G. Vella

Computer Information Systems Dept.
Faculty of ICT
University of Malta

BUSTECH 2025



2

01
02
03

What is a database upgrade?

Existing Techniques

AURORA



3

Motivation
• Each copy of the system 

is independent
• Each copy has its own 

unique database state
• But each copy has the 

same schema



4

The Developers 
Want to Upgrade

• Customers
• Payments
• Bookings
+ Promotions

?

?
?

?

?



5

Database Upgrades

• Database updates are complex
○ No loss of user data

§ Including user defined objects (e.g., views)
○ We want as little downtime as possible

§ We don’t want to run an upgrade that will definitely fail



6

The Revolut Incident

● Database updates can go 
very badly

● In 2019, Revolut needed to 
reverse a database upgrade

● Led to approximately 2.5 
hours of downtime.

https://web.archive.org/web/20200812131530/https://blog.revolut.com/revolut-
app-issues-30th-october-what-happened-and-what-we-did-to-fix-it/

https://web.archive.org/web/20200812131530/https:/blog.revolut.com/revolut-app-issues-30th-october-what-happened-and-what-we-did-to-fix-it/
https://web.archive.org/web/20200812131530/https:/blog.revolut.com/revolut-app-issues-30th-october-what-happened-and-what-we-did-to-fix-it/


7

Existing Solutions

They are separate from 
the database itself

Developer required to generate 
migration files.

Not Vendor-Specific

Vendors’ Offerings



8

Migration Files

• Specify the changes that will bring a database from one 
version to another.
○ E.g., add a new table called ‘Promotions’

• Generated in one of two ways:
○ Schema Diff
○ Manually



9

Schema Diff Algorithm
Generating migration files

• Customers
• Payments
• Bookings

• Customers
• Payments
• Bookings
• Promotions

comparison

Changes Detected:
• New Table: Promotions



10

Schema Diff Algorithm
Generating migration files

• Problems:
○ Does not detect data changes
○ Compares the database states as-is

§ Does not consider what happened in between



11

The Manual Approach
Generating migration files

• The developer manually writes the SQL statements that 
need to be executed

• This solves all the problems of the schema diff algorithm

• The developer needs to write the queries twice
1. Update development database
2. Generate the migration file

• Why is this a problem?
○ Mismatching SQL statements



12

Mismatching SQL Statements

Development

Application

Database

Developer

Perform Operation 𝒙

Assuming Statement 𝒚
was executed



• Statement 𝑥
• Statement 𝑦
• Statement 𝑧

13

Mismatching SQL 
Statements

• Statement 𝑥
• Statement 𝑦

Migration File
Development

Database
Perform Upgrade

Perform Upgrade

Perform Upgrade



14

How can we solve this?

• Easy to specify changes
• Accepts both data and structural changes
• No mismatching SQL statements.



What if the developer does 
not have to generate the 

migration file?

15



16

• Operation 𝑥
• Operation 𝑦
• Operation 𝑧

• Operation 𝑥
• Operation 𝑦
• Operation 𝑧

Migration File
Development

Database

AURORA



17

AURORA

• Automatically tracks the changes performed on a 
database

• Using this data it automatically:
○ Generates an upgrade script
○ Generates a set of pre-checks

§ Ensures that the upgrade can be executed before running it
○ Generates a set of post-checks

§ Ensures that the upgrade was executed as expected
○ Generates an undo script

§ To reverse the upgrade



18

Implementation
• Implemented in PostgreSQL
• Uses event triggers to automatically detect structural changes

• When a structural change is detected:
○ The event trigger checks the data dictionary and stores any 

changes in AURORA.

• Changes are given to a Python script to generate the upgrade 
file

• The upgrade file is then given to the client and run using a 
different Python script to upgrade the client’s database.



19

Data Dictionary

• One of the most crucial elements of the database 
management system (DBMS)
○ Without the data dictionary, the database cannot be 

understood by the DBMS
• Keeps track of all the objects in the database

○ Schemas, tables, views, functions, procedures, indexes

• PostgreSQL has two data dictionaries:
○ information_schema
○ pg_catalogue



20

Testing

• AURORA’s test suite includes:
○ Several unit tests
○ Several SQL scripts – both valid and invalid

• Test suite ensures that:
○ The developer’s queries are:

§ Tracked correctly by AURORA 
§ Correctly reflected in the upgrade script

○ The correct undo queries are generated
○ Pre-checks detect compatibility issues before upgrading a database
○ Post-checks detect unexpected changes after upgrading a database



21

Evaluation

• AURORA’s performance was evaluated in three ways:
○ Generating the Scott schema
○ Upgrading the MediaWiki database
○ Creating a custom database.



22

Final Remarks
• AURORA requires a DBMS with triggers that detect when a 

structural change has occurred
○ SQL Server and Oracle also have these

• A subset of DDL SQL statements are tracked, these include
○ Schemas, tables, constraints, views, functions, procedures, 

sequences, triggers.
• AURORA does not modify the queries given by the developer



23

Redundant Operations
Final Remarks

my_table

𝑡 = 0 𝑡 = 1

create my_table

𝑡 = 2

delete my_table

my_table

𝑡 = 3

re-create my_table

my_table



CREDITS: This presentation template was originally created by Slidesgo but it 
was adapted to suit this presentation

Thank You
Bradley Camilleri | camilleribrad.com

bradley.camilleri.22@um.edu.mt
University of Malta

Joseph G. Vella | um.edu.mt/profile/josephgvella

joseph.g.vella@um.edu.mt
University of Malta

https://bit.ly/3A1uf1Q

