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What is a database upgrade?

Existing Techniques

AURORA
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Motivation
• Each copy of the system 

is independent
• Each copy has its own 

unique database state
• But each copy has the 

same schema
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The Developers 
Want to Upgrade

• Customers
• Payments
• Bookings
+ Promotions

?

?
?

?

?
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Database Upgrades

• Database updates are complex
○ No loss of user data

§ Including user defined objects (e.g., views)
○ We want as little downtime as possible

§ We don’t want to run an upgrade that will definitely fail
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The Revolut Incident

● Database updates can go 
very badly

● In 2019, Revolut needed to 
reverse a database upgrade

● Led to approximately 2.5 
hours of downtime.

https://web.archive.org/web/20200812131530/https://blog.revolut.com/revolut-
app-issues-30th-october-what-happened-and-what-we-did-to-fix-it/

https://web.archive.org/web/20200812131530/https:/blog.revolut.com/revolut-app-issues-30th-october-what-happened-and-what-we-did-to-fix-it/
https://web.archive.org/web/20200812131530/https:/blog.revolut.com/revolut-app-issues-30th-october-what-happened-and-what-we-did-to-fix-it/
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Existing Solutions

They are separate from 
the database itself

Developer required to generate 
migration files.

Not Vendor-Specific

Vendors’ Offerings
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Migration Files

• Specify the changes that will bring a database from one 
version to another.
○ E.g., add a new table called ‘Promotions’

• Generated in one of two ways:
○ Schema Diff
○ Manually
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Schema Diff Algorithm
Generating migration files

• Customers
• Payments
• Bookings

• Customers
• Payments
• Bookings
• Promotions

comparison

Changes Detected:
• New Table: Promotions
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Schema Diff Algorithm
Generating migration files

• Problems:
○ Does not detect data changes
○ Compares the database states as-is

§ Does not consider what happened in between
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The Manual Approach
Generating migration files

• The developer manually writes the SQL statements that 
need to be executed

• This solves all the problems of the schema diff algorithm

• The developer needs to write the queries twice
1. Update development database
2. Generate the migration file

• Why is this a problem?
○ Mismatching SQL statements
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Mismatching SQL Statements

Development

Application

Database

Developer

Perform Operation 𝒙

Assuming Statement 𝒚
was executed



• Statement 𝑥
• Statement 𝑦
• Statement 𝑧
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Mismatching SQL 
Statements

• Statement 𝑥
• Statement 𝑦

Migration File
Development

Database
Perform Upgrade

Perform Upgrade

Perform Upgrade
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How can we solve this?

• Easy to specify changes
• Accepts both data and structural changes
• No mismatching SQL statements.



What if the developer does 
not have to generate the 

migration file?
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• Operation 𝑥
• Operation 𝑦
• Operation 𝑧

• Operation 𝑥
• Operation 𝑦
• Operation 𝑧

Migration File
Development

Database

AURORA
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AURORA

• Automatically tracks the changes performed on a 
database

• Using this data it automatically:
○ Generates an upgrade script
○ Generates a set of pre-checks

§ Ensures that the upgrade can be executed before running it
○ Generates a set of post-checks

§ Ensures that the upgrade was executed as expected
○ Generates an undo script

§ To reverse the upgrade
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Implementation
• Implemented in PostgreSQL
• Uses event triggers to automatically detect structural changes

• When a structural change is detected:
○ The event trigger checks the data dictionary and stores any 

changes in AURORA.

• Changes are given to a Python script to generate the upgrade 
file

• The upgrade file is then given to the client and run using a 
different Python script to upgrade the client’s database.
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Data Dictionary

• One of the most crucial elements of the database 
management system (DBMS)
○ Without the data dictionary, the database cannot be 

understood by the DBMS
• Keeps track of all the objects in the database

○ Schemas, tables, views, functions, procedures, indexes

• PostgreSQL has two data dictionaries:
○ information_schema
○ pg_catalogue
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Testing

• AURORA’s test suite includes:
○ Several unit tests
○ Several SQL scripts – both valid and invalid

• Test suite ensures that:
○ The developer’s queries are:

§ Tracked correctly by AURORA 
§ Correctly reflected in the upgrade script

○ The correct undo queries are generated
○ Pre-checks detect compatibility issues before upgrading a database
○ Post-checks detect unexpected changes after upgrading a database
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Evaluation

• AURORA’s performance was evaluated in three ways:
○ Generating the Scott schema
○ Upgrading the MediaWiki database
○ Creating a custom database.
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Final Remarks
• AURORA requires a DBMS with triggers that detect when a 

structural change has occurred
○ SQL Server and Oracle also have these

• A subset of DDL SQL statements are tracked, these include
○ Schemas, tables, constraints, views, functions, procedures, 

sequences, triggers.
• AURORA does not modify the queries given by the developer
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Redundant Operations
Final Remarks

my_table

𝑡 = 0 𝑡 = 1

create my_table

𝑡 = 2

delete my_table

my_table

𝑡 = 3

re-create my_table

my_table
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