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Abstract

Here we present Singularity, software developed to bring containers and reproducibility to
scientific computing. Using Singularity containers, developers can work in reproducible envi-
ronments of their choosing and design, and these complete environments can easily be cop-
ied and executed on other platforms. Singularity is an open source initiative that hamesses
the expertise of system and software engineers and researchers alike, and integrates seam-
lessly into common workflows for both of these groups. As its primary use case, Singularity
brings mobility of computing to both users and HPC centers, providing a secure means to
capture and distribute software and compute environments. This ability to create and deploy
reproducible environments across these centers, a previously unmet need, makes Singular-
ity a game changing development for computational science.

Introduction

The landscape of scientific computing is fluid. Over the past decade and a irtualization
has gone from an engineering toy to a global infrastructure necessity, and the evolution of
related technologies has thus flourished. The currency of files and folders has changed to appli-
cations and operating systems. The business of Supercomputing Centers has been to offer scal-
able computational resources to a set of users associated with an institution or group [1]. With
this scale came the challenge of version control to provide users with not just up-to-date soft-
ware, but multiple versions of it. Software modules [2, 3], virtual environments [4, 5], along
with intelligently organized file systems [6] and permissions [7] were essential developments
to give users control and reproducibility of work. On the administrative side, automated builds
and server configuration [8, 9] have made maintenance of these large high-performance com-
puting (HPC) clusters possible. Job schedulers such as SLURM [10] or SGE [11] are the meta-
phorical governors to control these custom analyses at scale, and are the primary means of
relay between administrators and users. The user requires access to consume resources, and
the administrator wants to make sure that the user has the t nd support to make the most
efficient use of them.
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Abstract

Here we present Singularity Hub, a framework to build and deploy Singularity containers for
mobility of compute, and the singularity-python software with novel metrics for assessing
reproducibility of such containers. Singularity containers make it possible for scientists and
developers to package reproducible software, and Singularity Hub adds automation to this
workflow by building, capturing metadata for, visualizing, and serving containers program-
matically. Our novel metrics, based on custom filters of content hashes of container con-
tents, allow for comparison of an entire container, including operating system, custom
software, and metadata. First we will review Singularity Hub's primary use cases and how
the infrastructure has been designed to support modern, common workflows. Next, we con-
duct three analyses to demonstrate build consistency, reproducibility metric and perfor-
mance and interpretability, and potential for discovery. This is the first effort to demonstrate
a rigorous assessment of measurable similarity between containers and operating systems.
We provide these capabilities within Singularity Hub, as well as the source software singu-
larity-python that provides the underlying functionality. Singularity Hub is available at https://
singularity-hub.org, and we are excited to provide it as an openly available platform for build-
ing, and deploying scientific containers.

1 Introduction
The modern scientist is challenged with the responsibilities of having expertise in a field, pro-
curing funding, teaching, and publishing to maintain a career. The publication that th

entists produce are implicitly expected to be “reproducible”, meaning that they document and
make available the methods, to repeat experiments and r  pro-
duce similar or identical results. :
vere not reproducible by other trained scientis
igation and di

he “reproducibility crisis” [1-3] revealed that a large propor-

tion of publications . What followed was
powerful, proactive action: an inv
data sharing, and di:

cussion about standards for public:
emination of code and tools for reproducible science [1-6].
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What are we going to be talking about today?

1. How has the container ecosystem changed since 20147

2. What about best practices?
3. Can | simulate the pulling part of a container study (and build a tool for others)?

4. What are "best practices" for pulling strategies, and how do they hold up?
5. Why should | care?
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How has the container ecosystem changed since 2014?

1. What we are interested in (that we can derive from registries):

Base images

Layer sizes

Research Software Image sizes

Databases 3°7°7k:rﬁ'e Rty Layer counts

Image manifests
Base Images layers

Machine Learning _
GitHub Orgs SIZES

Image similarity

Dockerfile images




How many tags does each base image have?

Distribution of Tags per Image for 1520 Base Images
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Layers per image

How has number of layers changed over time?

Number of layers per image by Year
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How has image size changed over time?

Total Image Sizes by Year
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How has image size changed over time?

Total Image Sizes by Year
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How has the container ecosystem
changed since 20147

Containers are getting larger
Layer size Is relatively constant



How similar are containers since 20147
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How similar are scientific Dockerfile based on layers?
These are layers from the Dockerfile images
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How similar are Dockerfile based on layer digests?
These are explicit layer digests (determining need to pull or not)

1e10 Cosine Similarity for 582K Unique Image Layers

528K layers

Treat layers as sentences in a document
word2vec embeddings

cosine similarity

cosine



What is the most commonly used base image?

TABLE III e Algorithm provided by "guts" software
BASE IMAGE CLASSIFICATION e Compares each image against database of common bases
e Similarity is based on similarity of paths (Jaccaard)

Count Base Image
debian 393

alpine 95

ubuntu 74

centos 64

fedora 15

rockylinux 11
busybox 4
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TABLE III e Algorithm provided by "guts" software
BASE IMAGE CLASSIFICATION e Compares each image against database of common bases
e Similarity is based on similarity of paths (Jaccaard)

Count Base Image
debian 393
alpine 95 e
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ubuntu 74
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How does container build strategy impact similarity?

1. More similar containers mean redundancy of layers, and less space used on the filesystem and pull time

CONTAINER 2025

2) Best effort to create redundancy (i
- Best effort builds of the same

1) Reasonable effort to create redundancy
- Real performance study containers

3) Little effort to create redundancy
- High redundancy (spack)




How does container build strategy impact similarity?
Let's first look at containers from a real performance study



Performance Study Containers .
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Which container set?
= AWS and Google GPU containers
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Which container set?
= AWS and Google GPU containers
= AWS and Google CPU containers
= Rocky bases for Compute Engine
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Performance Study Containers .

Which container set?

= AWS and Google GPU containers
= AWS and Google CPU containers
= Rocky bases for Compute Engine
= Azure GPU
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How does container build strategy impact similarity?
Now let's take a slice of that set (from one cloud)



Build strategy influences container similarity
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The number of unique layer pulls per strategy:
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How does container build strategy impact similarity?
Redundancy of layers increases similarity



What about best practices?



Are people using multi-stage builds?

# Dockerfile
# build stage

FROM buildbase as build e Look for more than one FROM in our database
e We find 2.56% of image builds use multi-build strategy

# production ready stage
FROM runbase

COPY --from=build
/artitftact




Are people using docker "official” images?

e Look at FROM directive
e 14.77% of image base are from Docker Hub

w docker:




Are people using the "latest” tags?

e This is considered a bad practice (moving target)
e We can look at the FROM directive tag
e 5.3% of images use latest




Are people using pinned image digests?

This guarantees an exact build (version)
Comes at the cost of security updates
We can look for a sha256 instead of a tag
Only 0.09 (less than 1%) found




apt-get and install in the same line?

e 507,695 layers use apt-get
e Of that set, 94.3% also have apt-get install
e Of that set, 67.8% do a clean too



apt-get and install in the same line?

-d "$rootfsDir/etc/apt/apt.conf.d" ]; then

=

# _keep_ us lean by effectively running "apt-get clean" after every install

aptGetClean='"rm -f /var/cache/apt/archives/*.deb /var/cache/apt/archives/partial/*.deb /var/cache/apt/*.bin || true";'

echo >&2 "+ cat > '$rootfsDir/etc/apt/apt.conf.d/docker-clean'"
cat > "$rootfsDir/etc/apt/apt.conf.d/docker-clean" <<-EOF
# Since for most Docker users, package installs happen in "docker build" steps,
they essentially become individual layers due to the way Docker handles
layering, especially using CoW filesystems. What this means for us 1is that
¢ the caches that APT keeps end up just wasting space in those layers, making
our layers unnecessarily large (especially since we'll normally never use

these caches again and will instead just "docker build" again and make a brand

new image).




What about best practices?
People often don't follow them, but best that the tooling
Implements them.



What is more important, image size or
number of layers?



Does the number of layers matter at all?
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| built a simulation tool "container-crafter” for pulling studies

# URI is the base or root to build

uri: ghcr.io/converged-computing/container-chonks-runi

# Sizes are in bytes, the total size for the container
sizes:

- total: 53702097

- total: 58049507.8

- total: 71460665.0

- total: 91388866.2

- total: 108513992.4

A config file is used to build mock containers.
We control the layer count; total image size
Each layer is guaranteed to be unique

The tool will build to a specific URI

Each layer only allowed up to 10GB

- total: 132399102
- total: 163049655.
- total: 218665412.
- total: 271728773.
- total: 320018606.
- total: 392602448

- total: 496514346.

- total: 687439577.

- total: 1181249324.6

- total: 2775722493.4

- total: 6841726027.3

- total: 10907729561.2 # range between the two
- total: 14973733095.1

- total: 19039736629 # 100th

are the number of o do for each size

://github.com/moby

9
i 125




TABLE 1

IMAGE S1ZES CHOSEN FOR PULLING STUDY

Image Size (bytes)

Human readable

Percentile from Database

| built a simulation tool "container-crafter” for pulling studies

Sizes chosen at percentile increments of 5

) . . .
232)23233;’ 83:85“41\481)3) gf;ﬁ derived from the real data, with the exception of
71460665.0 (71.46 MB) 35th the 95th-100th percentile that was broken into
91388866.2 (91.39 MB) 40th ‘o
108513992 4 (108.51 MB) A5th an additional set of three ranges.
132399102.0 (132.4 MB) 50th
163049655.0 (163.05 MB) 55th
218665412.8 (218.67 MB) 60th
271728773.4 (271.73 MB) 65th
320018606.2 (320.02 MB) 70th
392602448.0 (392.60 MB) 75th
496514346.8 (496.51 MB) 80th
687439577.6 (687.44 MB) 85th
1181249324.6 (1.18 GB) 90th
2775722493 .4 (2.78 GB) 95th
6841726027.3 (6.84 GB) 96.25th
10907729561.2 (10.91 GB) 97.5th
14973733095.1 (14.97 GB) 08.75th

19039736629.0 (19.04 GB) 100th




Pull time (seconds)

What matter is total image size, not number of layers

Pull times for Test Experiments nl-standard-16
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The same total size split across 1-100 layers takes the same amount of time.
What explodes pulling time is just the total size of the image.
The number of layers largely doesn't matter.



Pull time (seconds)

For the study, use a value that reflects actual practice

Pull times for Test Experiments nl-standard-16
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The same total size split across 1-100 layers takes the same amount of time.
What explodes pulling time is just the total size of the image.
The number of layers largely doesn't matter.



What is more important, image size or
number of layers?
Image size!



What is the best strategy for container pulling?



Cloud Pulling Study

e Google Kubernetes Engine (GKE)
e 16 VvCPU, 60GB RAM / node
e Node (cluster) sizes 4, 8, 32, 64, 128, and 256
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e 16 VvCPU, 60GB RAM / node
e Node (cluster) sizes 4, 8, 32, 64, 128, and 256

For each container (size and layers):
A Job will be created to pull the container
Kubernetes Event Exporter used to collect all events

n1-standard-64 was only 1.028x
faster, but 3.87x more expensive



Cloud Pulling Study

e Google Kubernetes Engine (GKE) n1-standard-64 was only 1.028x
e 16 vCPU, 60GB RAM / node faster, but 3.87x more expensive
e Node (cluster) sizes 4, 8, 32, 64, 128, and 256

For each container (size and layers):
A Job will be created to pull the container
Kubernetes Event Exporter used to collect all events

Each experiment will be conducted several times to assess a setup



Strategies for optimized container pulling in Kubernetes

Use a local (cloud provided) registry

Use a solid state drive (SSD) instead of persistent disk (HDD)
Use image streaming (SOCI Snapshotter and similar)

Use zstandard compression (greater than 3x faster than gzip)
Preload images onto nodes (using a Daemonset)?
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Strategies for optimized container pulling in Kubernetes

e Use a local (cloud provided) registry (pulling latency)
e Use a solid state drive (SSD) instead of persistent disk (HDD) (FS latency)
e Use image streaming (SOCI Snapshotter and similar)

1. First test with containers generated from simulation tool.
2. Then use real-world application containers.



Strategies for optimized container pulling in Kubernetes

e Use a local (cloud provided) registry (pulling latency)
e Use a solid state drive (SSD) instead of persistent disk (HDD) (FS latency)
e Use image streaming (SOCI Snapshotter and similar)

1. First test with containers generated from simulation tool.
2. Then use real-world application containers.
3. Test node coordination



What is the best strategy for container pulling?
Let's look at the results!



Does pulling from a local registry improve pull times?
No, not really

180.0 Container Pull times for Experiment with 9 Layers, ghcr.io
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Does pulling from a local registry improve pull times?
No, not really
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Does pulling from a local registry improve pull times?
No, not really

Container Pull times for Experiment with 9 Layers, gcr.io
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Does pulling from a local registry improve pull times?
No, not really
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Does pulling with local SSD improve pull times?
Yes! Often 1.25x

Container Pull times for Experiment with 9 Layers, ghcr.io
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Does pulling with local SSD improve pull times?
Yes! Often 1.25x
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Does pulling with image streaming improve pull times?
Impossibility, yes.

Container Pull times for Experiment with 9 Layers, ghcr.io
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Does pulling with image streaming improve pull times?
Real application containers for AMG, LAMMPS, OSU, Minife bullt with spack

Container Pull times for Streaming vs Without Across Sizes
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Image Streaming - why was it investigated in the first place?

"Image download accounts for 76% of container startup time, but on
average only 6.4% of the fetched data is actually needed for the container

to start doing useful work."

Harter et al FAST '16



https://www.usenix.org/node/194431

Image Streaming - why was it investigated in the first place?

Faster Container Pulling in Kubernetes
The SOCI "Seekable OCI" Snapshotter

Faster Container Pulling in Kubernetes
he SOCI "Seekable OCI" Snapshotter

Vanessa Sochat

https://youtu.be/ZXM1gP4goP8



Image Streaming - how does it work?
Step 1. We record the entrypoint to find "prioritized files”

prefetch landmark

.prefetch.landmark) Footer

prioritized files ‘ (

- gzip member

- omitted gzip member

..........

- tar header

- regular file payload

................................... - .+« footer

no-prefetch landmark _
(.no.prefetch.landmark) + + - landmark file payload

https.//github.com/containerd/stargz-snapshotter/blob/main/docs/estargz.md
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Image Streaming - how does it work?
Step 2: Image and table of contents (artifact) pushed to registry

Image Manifest List Image Manifest Referrers Manifest List

SBOM (software bill of materials)
SOCI Index
Squirrel Snacks?

SOCI Index

ztoc artifact
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A snapshot is a view of the container filesystem, prepared from a layer

1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents
2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files

3. After the prioritized files are downloaded, we mark the container as ready (and it's ready much faster)

4. Additional content needed is loaded on demand using the distribution spec "resumable pull"

Resumable Pull

Company X is having more connectivity problems but this time in their deployment datacenter. When downloading a blob, the

connection is interrupted before completion. The client keeps the partial data and uses http Range requests to avoid downloading
repeated data.

https://github.com/opencontainers/distribution-spec/blob/main/spec.md
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Image Streaming - how does it work?
Putting it all together!

A snapshot is a view of the container filesystem, prepared from a layer

1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents

2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files

3. After the prioritized files are downloaded, we mark the container as ready (and it's ready much faster)

4. Additional content needed is loaded on demand using the distribution spec "resumable pull"

5. From the user perspective, the container pulled a lot faster because we only actually pulled a small subset of files.

14. Range Requests

Clients often encounter interrupted data transfers as a result of canceled requests or dropped connections.
When a client has stored a partial representation, it is desirable to request the remainder of that
representation in a subsequent request rather than transfer the entire representation. Likewise, devices with
limited local storage might benefit from being able to request only a subset of a larger representation, such
as a single page of a very large document, or the dimensions of an embedded image.

Range requests are an OPTIONAL feature of HTTP, designed so that recipients not implementing this feature
(or not supporting it for the target resource) can respond as if it is a normal GET request without impacting
interoperability. Partial responses are indicated by a distinct status code to not be mistaken for full responses
by caches that might not implement the feature.

https://www.rfc-editor.org/rfc/rfc9110.html#name-range-requests



Image Streaming - how does it work?
Putting it all together!

A snapshot is a view of the container filesystem, prepared from a layer

1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents
2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files

3. After the prioritized files are downloaded, we mark the container as ready (and it's ready much faster)

4. Additional content needed is loaded on demand using the distribution spec "resumable pull"

5. From the user perspective, the container pulled a lot faster because we only actually pulled a small subset of files.

Since files needed later in execution are pulled on demand, we have to be cautious
about using that plugin for apps that require loading large data later in execution!



What is the best strategy for container pulling?
SSD is a good idea always, image streaming sometimes



Node Coordination



Does node coordination lead to slower pull times?
Are we limited by the slowest node?

Pull times didn't increase but...
Overall experiment time increased with cluster size

Total Experiment Time as a Function of Size
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Does node coordination lead to slower pull times?
Are we limited by the slowest node?

Event times are not coordinated (understandably) across nodes...
but it means we are limited by the slowest node

Time Differences Between Event "Pulled" Across Nodes
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Node Coordination
Nodes are less coordinated as nodes increase, we need to
better understand why.



LELCEVEVS



What did we learn from this work?

e A container building strategy optimized for similarity in container layers, and a pulling strategy
(filesystem or algorithm) to decrease pull time can decrease total cost for a study.

This improvement becomes more salient when using expensive resources such as GPU, or an
auto-scaling strategy that provisions new nodes that don't have images cached.
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Let's calculate cost with respect to unique layers

Assuming:
- We have 10 total applications (what we had for our performance study)
- Each image has mean layer size (~12MB), and mean layers (16) (means from dataset of 77K Dockerfiles)

Strategy: look at extremes

- In an ideal case, the first image pull (across nodes) pulls all layers (and they are cached)
- In the worst case, no layer redundancy means 16 new layers each time

How many layer pulls?

- In the best (hypothetical) case of all the same layers we would pull only the equivalent of 1 container, 16 layers
- This is not a realistic case because you can't have different apps with the exact same layers!

- In the worst case of all different layers, we would pull 10 x 16 == 160 layers

Sizes: For this hypothetical scenario, we estimate
- In the best case, mean layer size 12MB x 16 == 192 MB ?m: 2 ;09560332:%;23[&‘; r\‘/sgzﬂr]uerr‘r;mg
- In the worst case, 12MB x 160 == 1920 MB '

amount of time is significant depends on
the size of the cluster, the cost of the

Pull times (assuming 3-5MB per second) nodes, and the budget. E.g., the
- In the best case, 192 MB will take: 39-64 seconds p5.48xlarge node at AWS is $98.32/hqur.
- In the worst case, 1920 MB will take: 384-640 seconds (6.4 - 11 minutes) For a size 32 cluster (~$3146/hour), it

- Differences 345-576 seconds (5.75-9.6 minutes) would be an additional appox $301 - $503.
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What about with a ML oriented image?

Assuming:

- 10 images like pytorch/pytorch (with nothing else)
- Layers include:

30MB
7.3MB
3.6GB (3622 MB)

Sizes:

- In the best case, we pull 3 layers == 3659.3 MB
- In the worst case, 3659.3 3 layers x 10 == 36593 MB (36.593 GB)

Pull times (assuming 3-5MB per second)

- In the best case, 192 MB will take: 732-1219 seconds (12-20 minutes)
- In the worst case, pulling takes: 7318-12198 seconds (122-203 minutes)
- Differences 6586-10979 seconds (110-183 minutes)

For this hypothetical scenario with ML
images, we estimate 110-183 minutes
more of node running time to account for
pulling. Given the p5.48xlarge node at
$98.32/hour (on demand) for a size 32
cluster (~$3146/hour), it would be an
additional appox $5768 - $9595.3.



Some Additional Strategies



What else can we do in these cases?
Other strategies for caching image layers...

e Use something like AWS Parallel Cluster where you can pre-pull to a head node with a shared
volume, and the workers then create and bind to it.

e If you are auto-scaling, use a setup that mounts a read only volume with containers that are
pre-pulled.

e Use a pull-through cache that provides a local registry cache alongside your cluster.

e Forinnovation, we can explore other algorithms for predicting content to pull, compression
algorithms, and improved file-system latency.



What did we learn from this work?
It is our responsibility to be aware of cost savings

e A container building strategy optimized for similarity in container layers can increase layer
redundancy, decreasing time needed to pull and thus decreasing total time and cost for a study.

e Extra time is accumulated as clusters get larger, a result that could be due to decreases in node
coordination and needing to wait for the slowest node to finish pulling. This finding is interesting
and warrants further exploration for behavior and solutions.



What did we learn from this work?
It is our responsibility to be aware of cost savings

e A container building strategy optimized for similarity in container layers can increase layer
redundancy, decreasing time needed to pull and thus decreasing total time and cost for a study.

e Extra time is accumulated as clusters get larger, a result that could be due to decreases in node
coordination and needing to wait for the slowest node to finish pulling. This finding is interesting
and warrants further exploration for behavior and solutions.

e Container streaming is an ideal strategy for quickly starting containers that are large, but caution
should be used if large amounts of new data are needed for application execution later in the
run than is recorded by the snapshotter tool.



Interesting Findings
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The Genghis Khan of container layers!
The outlier in the layer set - a digest that appeared 67,897 times!

e An empty set of 32 bytes associated with a WORKDIR directive

e But... only for cases when the directory already existed.

e Turns out... there is an "empty layer" flag in the image config. If
a tool decides not to set that flag for some reason, the tool needs
to ship a valid tar+gzip, so even without any files being
packaged, this takes up space in the tar and gzip headers.

This was implemented before it was discovered that /dev/null is a
valid empty file.

emptyGZLayer = digest.Digest("sha256:4f4fb700ef54461cfa02571ae@db9aldcle@cdb5577484a6d75e68dc38e8accl”

emptyDigest = digest.Digest("")



How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

e | started with an understanding that the limit is 127 layers



How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

e | started with an understanding that the limit is 127 layers
e In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver



How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

e | started with an understanding that the limit is 127 layers

e In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
e But containerd doesn't set a maximum...



How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

e | started with an understanding that the limit is 127 layers

e In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
e But containerd doesn't set a maximum...

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!



How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

e | started with an understanding that the limit is 127 layers

e In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
e But containerd doesn't set a maximum...

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

e The limit was originally enforced because of a limit with mounting layers
o Specifically the length of an argument to a syscall that led to technical maximums



How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

e | started with an understanding that the limit is 127 layers

e In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
e But containerd doesn't set a maximum...

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

e The limit was originally enforced because of a limit with mounting layers

o Specifically the length of an argument to a syscall that led to technical maximums
e But this depends on the operator system, kernel version, and container runtime!



How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

e | started with an understanding that the limit is 127 layers

e In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
e But containerd doesn't set a maximum...

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

e The limit was originally enforced because of a limit with mounting layers
o Specifically the length of an argument to a syscall that led to technical maximums
e But this depends on the operator system, kernel version, and container runtime!

e containerd and buildkit use a practical approach that doesn't validate (and allows the error to propagate)



How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

e | started with an understanding that the limit is 127 layers

e In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
e But containerd doesn't set a maximum...

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

e The limit was originally enforced because of a limit with mounting layers
o Specifically the length of an argument to a syscall that led to technical maximums
e But this depends on the operator system, kernel version, and container runtime!

e containerd and buildkit use a practical approach that doesn't validate (and allows the error to propagate)
e docker hard codes manual checks so you don't get to that point



How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

| started with an understanding that the limit is 127 layers

In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
But containerd doesn't set a maximum...

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

The limit was originally enforced because of a limit with mounting layers
o Specifically the length of an argument to a syscall that led to technical maximums
But this depends on the operator system, kernel version, and container runtime!
containerd and buildkit use a practical approach that doesn't validate (and allows the error to propogate)
docker hard codes manual checks so you don't get to that point
docker will fail on this mount step after pulling the layers...



AGAIN, THIS IS INFORMATION
YOU COULD HAVE TOLD ME

BEFORE PULLING!






Let's make a SOCI snapshotter daemonset!
This is much easier to install!

kubectl apply -f soci-installer.yaml

This logic can be extended:

e To support other authentication schemes
e Other clouds (that don't have flags already)







Thank you!

sochatl@llnl.gov

B Lawrence Livermore
National Laboratory
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Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name, trademark,
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recommendation, or favoring by the United States government or Lawrence Livermore National
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