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What is the best 
way to pull a 
container?



8LLNL-PRES-XXXXXX

What are we going to be talking about today?

1. How has the container ecosystem changed since 2014?



9LLNL-PRES-XXXXXX

What are we going to be talking about today?

1. How has the container ecosystem changed since 2014?
2. What about best practices?



10LLNL-PRES-XXXXXX

What are we going to be talking about today?

1. How has the container ecosystem changed since 2014?
2. What about best practices?
3. Can I simulate the pulling part of a container study (and build a tool for others)?



11LLNL-PRES-XXXXXX

What are we going to be talking about today?

1. How has the container ecosystem changed since 2014?
2. What about best practices?
3. Can I simulate the pulling part of a container study (and build a tool for others)?
4. What are "best practices" for pulling strategies, and how do they hold up?



12LLNL-PRES-XXXXXX

What are we going to be talking about today?

1. How has the container ecosystem changed since 2014?
2. What about best practices?
3. Can I simulate the pulling part of a container study (and build a tool for others)?
4. What are "best practices" for pulling strategies, and how do they hold up?
5. Why should I care?
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How has the container ecosystem changed since 2014?

1. What we are interested in (that we can derive from registries):

Registry

Image manifests
   layers
     sizes

Dockerfile
 x 77k

Base Images

Research Software
Databases

Machine Learning
GitHub Orgs

Layer sizes
Image sizes
Layer counts

Image similarity

Dockerfile images

Base images
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How many tags does each base image have?

● Ranges from 1 to ~17k tags
● Mean 1842 tags, std 2,531 tags
● One outlier removed (nix/nixos) ~47k tags
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How many tags does each base image have?

● Ranges from 1 to ~17k tags
● Mean 1842 tags, std 2,531 tags
● One outlier removed (nix/nixos) ~47k tags

Tag counts reflects release frequency 
(and often automation)
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How has number of layers changed over time?

● Mean 16.58 +/- 23.66
● More outliers over the years
● Yes, people are building >> 127 layers
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How has image size changed over time?

● Total size can be calculated - sum of layers
● Number of layers is relatively consistent…
● But size is trending larger
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How has image size changed over time?
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"Just build smaller containers!"
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How has the container ecosystem 
changed since 2014?

Containers are getting larger
Layer size is relatively constant
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How similar are containers since 2014?
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How similar are scientific Dockerfile based on layers?
These are layers from the Dockerfile images

528K layers
Treat layers as sentences in a document
word2vec embeddings
cosine similarity
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How similar are Dockerfile based on layer digests?
These are explicit layer digests (determining need to pull or not)

528K layers
Treat layers as sentences in a document
word2vec embeddings
cosine similarity
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How does container build strategy impact similarity?

1. More similar containers mean redundancy of layers, and less space used on the filesystem and pull time

1) Reasonable effort to create redundancy
- Real performance study containers

2) Best effort to create redundancy
- Best effort builds of the same

3) Little effort to create redundancy
- High redundancy (spack)
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How does container build strategy impact similarity?
Let's first look at containers from a real performance study
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Performance Study Containers
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Performance Study Containers
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How does container build strategy impact similarity?
Now let's take a slice of that set (from one cloud)
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Build strategy influences container similarity

Real performance study containers Best effort of same containers Spack
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The number of unique layer pulls per strategy:

Real performance study containers

45% of layers are unique pulls

Best effort of same containers

28% of layers are unique pulls

Spack

89% of layers are unique pulls
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The number of unique layer pulls per strategy:

Real performance study containers

45% of layers are unique pulls

Best effort of same containers

28% of layers are unique pulls

Spack

89% of layers are unique pulls
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How does container build strategy impact similarity?
Redundancy of layers increases similarity
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What about best practices?
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Are people using multi-stage builds?

● Look for more than one FROM in our database
● We find 2.56% of image builds use multi-build strategy
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Are people using docker "official" images?

● Look at FROM directive
● 14.77% of image base are from Docker Hub
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Are people using the "latest" tags?

● This is considered a bad practice (moving target)
● We can look at the FROM directive tag
● 5.3% of images use latest
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Are people using pinned image digests?

● This guarantees an exact build (version)
● Comes at the cost of security updates
● We can look for a sha256 instead of a tag
● Only 0.09 (less than 1%) found
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apt-get and install in the same line?

● 507,695 layers use apt-get
● Of that set, 94.3% also have apt-get install
● Of that set, 67.8% do a clean too
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● 507,695 layers use apt-get
● Of that set, 94.3% also have apt-get install
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What about best practices?
People often don't follow them, but best that the tooling 

implements them.
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What is more important, image size or 
number of layers?
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Does the number of layers matter at all?
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I built a simulation tool "container-crafter" for pulling studies

● A config file is used to build mock containers. 
● We control the layer count; total image size
● Each layer is guaranteed to be unique
● The tool will build to a specific URI
● Each layer only allowed up to 10GB
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I built a simulation tool "container-crafter" for pulling studies

Sizes chosen at percentile increments of 5
derived from the real data, with the exception of
the 95th-100th percentile that was broken into 
an additional set of three ranges.
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What matter is total image size, not number of layers

The same total size split across 1-100 layers takes the same amount of time.
What explodes pulling time is just the total size of the image.
The number of layers largely doesn't matter.

Sizes between 
14MB-19GB
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For the study, use a value that reflects actual practice

The same total size split across 1-100 layers takes the same amount of time.
What explodes pulling time is just the total size of the image.
The number of layers largely doesn't matter.

For further study, I chose 
sizes 9 (median of the 
dataset) and max 125
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What is more important, image size or 
number of layers?

Image size!
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What is the best strategy for container pulling?
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n1-standard-64 was only 1.028x 
faster, but 3.87x more expensive
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Cloud Pulling Study

● Google Kubernetes Engine (GKE)
● 16 vCPU, 60GB RAM / node          
● Node (cluster) sizes 4, 8, 32, 64, 128, and 256

For each container (size and layers):
    A Job will be created to pull the container
    Kubernetes Event Exporter used to collect all events

Each experiment will be conducted several times to assess a setup
     

n1-standard-64 was only 1.028x 
faster, but 3.87x more expensive
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Strategies for optimized container pulling in Kubernetes

● Use a local (cloud provided) registry
● Use a solid state drive (SSD) instead of persistent disk (HDD)
● Use image streaming (SOCI Snapshotter and similar)
● Use zstandard compression (greater than 3x faster than gzip)
● Preload images onto nodes (using a Daemonset)?
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Strategies for optimized container pulling in Kubernetes

● Use a local (cloud provided) registry (pulling latency)
● Use a solid state drive (SSD) instead of persistent disk (HDD) (FS latency)
● Use image streaming (SOCI Snapshotter and similar)

1. First test with containers generated from simulation tool.
2. Then use real-world application containers.
3. Test node coordination
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What is the best strategy for container pulling?
Let's look at the results!
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Does pulling from a local registry improve pull times?
No, not really

ghcr.io
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Pull time does not increase for 
larger clusters!
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Does pulling with image streaming improve pull times?
Real application containers for AMG, LAMMPS, OSU, Minife bullt with spack

gcr.io
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Image Streaming - why was it investigated in the first place?

"Image download accounts for 76% of container startup time, but on 
average only 6.4% of the fetched data is actually needed for the container 
to start doing useful work."

Harter et al FAST '16

https://www.usenix.org/node/194431
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Image Streaming - why was it investigated in the first place?

https://youtu.be/ZXM1gP4goP8

Faster Container Pulling in Kubernetes
The SOCI "Seekable OCI" Snapshotter
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Image Streaming - how does it work?
Step 1: We record the entrypoint to find "prioritized files" 

https://github.com/containerd/stargz-snapshotter/blob/main/docs/estargz.md
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Image Streaming - how does it work?
Step 1: We record the entrypoint to find "prioritized files" 

https://github.com/containerd/stargz-snapshotter/blob/main/docs/estargz.md



87LLNL-PRES-XXXXXX

Image Manifest List

docker pull

"My host is amd64" Image Manifest Referrers Manifest List

SBOM (software bill of materials)
SOCI Index
Squirrel Snacks?

SOCI Index

ztoc artifact

Image Streaming - how does it work?
Step 2: Image and table of contents (artifact) pushed to registry
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1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents

A snapshot is a view of the container filesystem, prepared from a layer

Image Streaming - how does it work?
Putting it all together!
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1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents
2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files
3. After the prioritized files are downloaded, we mark the container as ready (and it's ready much faster)
4. Additional content needed is loaded on demand using the distribution spec "resumable pull"

A snapshot is a view of the container filesystem, prepared from a layer

Image Streaming - how does it work?
Putting it all together!

https://github.com/opencontainers/distribution-spec/blob/main/spec.md
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1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents
2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files
3. After the prioritized files are downloaded, we mark the container as ready (and it's ready much faster)
4. Additional content needed is loaded on demand using the distribution spec "resumable pull"
5. From the user perspective, the container pulled a lot faster because we only actually pulled a small subset of files.

A snapshot is a view of the container filesystem, prepared from a layer

Image Streaming - how does it work?
Putting it all together!

https://www.rfc-editor.org/rfc/rfc9110.html#name-range-requests
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1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents
2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files
3. After the prioritized files are downloaded, we mark the container as ready (and it's ready much faster)
4. Additional content needed is loaded on demand using the distribution spec "resumable pull"
5. From the user perspective, the container pulled a lot faster because we only actually pulled a small subset of files.

A snapshot is a view of the container filesystem, prepared from a layer

Since files needed later in execution are pulled on demand, we have to be cautious 
about using that plugin for apps that require loading large data later in execution!

Image Streaming - how does it work?
Putting it all together!
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What is the best strategy for container pulling?
SSD is a good idea always, image streaming sometimes
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Node Coordination
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Does node coordination lead to slower pull times?
Are we limited by the slowest node?

Pull times didn't increase but…
Overall experiment time increased with cluster size
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Does node coordination lead to slower pull times?
Are we limited by the slowest node?

Event times are not coordinated (understandably) across nodes…
but it means we are limited by the slowest node
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Node Coordination
Nodes are less coordinated as nodes increase, we need to 

better understand why.
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Takeaways
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What did we learn from this work?

● A container building strategy optimized for similarity in container layers, and a pulling strategy 
(filesystem or algorithm) to decrease pull time can decrease total cost for a study.

This improvement becomes more salient when using expensive resources such as GPU, or an 
auto-scaling strategy that provisions new nodes that don't have images cached.
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- We have 10 total applications (what we had for our performance study)
- Each image has mean layer size (~12MB), and mean layers (16) (means from dataset of 77K Dockerfiles)
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Let's calculate cost with respect to unique layers
Assuming:
- We have 10 total applications (what we had for our performance study)
- Each image has mean layer size (~12MB), and mean layers (16) (means from dataset of 77K Dockerfiles)

Strategy: look at extremes
- In an ideal case, the first image pull (across nodes) pulls all layers (and they are cached)
- In the worst case, no layer redundancy means 16 new layers each time

How many layer pulls?
- In the best (hypothetical) case of all the same layers we would pull only the equivalent of 1 container, 16 layers
  - This is not a realistic case because you can't have different apps with the exact same layers!
- In the worst case of all different layers, we would pull 10 x 16 == 160 layers

Sizes:
- In the best case, mean layer size 12MB x 16   ==   192 MB
- In the worst case,                         12MB x 160 == 1920 MB

Pull times (assuming 3-5MB per second)
- In the best case, 192 MB will take:       39-64 seconds
- In the worst case, 1920 MB will take:   384-640 seconds (6.4 - 11 minutes)
- Differences                                           345-576 seconds (5.75-9.6 minutes)

For this hypothetical scenario, we estimate 
5.75 - 9.6 minutes more of node running 
time to account for pulling. Whether this 
amount of time is significant depends on 

the size of the cluster, the cost of the 
nodes, and the budget. E.g., the 

p5.48xlarge node at AWS is $98.32/hour. 
For a size 32 cluster (~$3146/hour), it 

would be an additional appox $301 - $503.
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Assuming:

- 10 images like pytorch/pytorch (with nothing else)
- Layers include:

       30MB
       7.3MB
       3.6GB (3622 MB)

What about with a ML oriented image?
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Assuming:

- 10 images like pytorch/pytorch (with nothing else)
- Layers include:

       30MB
       7.3MB
       3.6GB (3622 MB)

Sizes:

- In the best case, we pull 3 layers          ==   3659.3 MB
- In the worst case, 3659.3 3 layers x 10 ==  36593 MB (36.593 GB)

Pull times (assuming 3-5MB per second)

- In the best case, 192 MB will take:       732-1219 seconds (12-20 minutes)
- In the worst case, pulling takes:           7318-12198 seconds  (122-203 minutes)
- Differences                                           6586-10979 seconds (110-183 minutes)

What about with a ML oriented image?
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What about with a ML oriented image?
Assuming:

- 10 images like pytorch/pytorch (with nothing else)
- Layers include:

       30MB
       7.3MB
       3.6GB (3622 MB)

Sizes:

- In the best case, we pull 3 layers          ==   3659.3 MB
- In the worst case, 3659.3 3 layers x 10 ==  36593 MB (36.593 GB)

Pull times (assuming 3-5MB per second)

- In the best case, 192 MB will take:       732-1219 seconds (12-20 minutes)
- In the worst case, pulling takes:           7318-12198 seconds  (122-203 minutes)
- Differences                                           6586-10979 seconds (110-183 minutes)

For this hypothetical scenario with ML 
images, we estimate 110-183 minutes 

more of node running time to account for 
pulling. Given the p5.48xlarge node at 
$98.32/hour (on demand) for a size 32 
cluster (~$3146/hour), it would be an 

additional appox $5768 - $9595.3.
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Some Additional Strategies
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What else can we do in these cases?
Other strategies for caching image layers…

● Use something like AWS Parallel Cluster where you can pre-pull to a head node with a shared 
volume, and the workers then create and bind to it.

● If you are auto-scaling, use a setup that mounts a read only volume with containers that are 
pre-pulled.

● Use a pull-through cache that provides a local registry cache alongside your cluster.

● For innovation, we can explore other algorithms for predicting content to pull, compression 
algorithms, and improved file-system latency.
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What did we learn from this work?
It is our responsibility to be aware of cost savings

● A container building strategy optimized for similarity in container layers can increase layer 
redundancy, decreasing time needed to pull and thus decreasing total time and cost for a study. 

● Extra time is accumulated as clusters get larger, a result that could be due to decreases in node 
coordination and needing to wait for the slowest node to finish pulling. This finding is interesting 
and warrants further exploration for behavior and solutions.
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It is our responsibility to be aware of cost savings

● A container building strategy optimized for similarity in container layers can increase layer 
redundancy, decreasing time needed to pull and thus decreasing total time and cost for a study. 

● Extra time is accumulated as clusters get larger, a result that could be due to decreases in node 
coordination and needing to wait for the slowest node to finish pulling. This finding is interesting 
and warrants further exploration for behavior and solutions.

● Container streaming is an ideal strategy for quickly starting containers that are large, but caution 
should be used if large amounts of new data are needed for application execution later in the 
run than is recorded by the snapshotter tool.
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Interesting Findings
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to ship a valid tar+gzip, so even without any files being 
packaged, this takes up space in the tar and gzip headers.
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The Genghis Khan of container layers!
The outlier in the layer set - a digest that appeared 67,897 times!

● An empty set of 32 bytes associated with a WORKDIR directive
● But… only for cases when the directory already existed.
● Turns out… there is an "empty layer" flag in the image config. If 

a tool decides not to set that flag for some reason, the tool needs 
to ship a valid tar+gzip, so even without any files being 
packaged, this takes up space in the tar and gzip headers.

This was implemented before it was discovered that /dev/null is a 
valid empty file.
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How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

● I started with an understanding that the limit is 127 layers
● In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
● But containerd doesn't set a maximum…

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

● The limit was originally enforced because of a limit with mounting layers
○ Specifically the length of an argument to a syscall that led to technical maximums

● But this depends on the operator system, kernel version, and container runtime!
● containerd and buildkit use a practical approach that doesn't validate (and allows the error to propogate)
● docker hard codes manual checks so you don't get to that point
● docker will fail on this mount step after pulling the layers…
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The "refnode" is following the same convention!
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Let's make a SOCI snapshotter daemonset!
This is much easier to install!

kubectl apply -f soci-installer.yaml

This logic can be extended:

● To support other authentication schemes
● Other clouds (that don't have flags already)
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The "refnode" is following the same convention!



Thank you!
sochat1@llnl.gov 
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