
LLNL-PRES-853680
This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC

Trends and Practices for Pulling HPC Containers in Cloud

Vanessa Sochat
Principal Computer Scientist
Lawrence Livermore National Laboratory

LLNL-PRES-872719

2LLNL-PRES-XXXXXX

3LLNL-PRES-XXXXXX

4LLNL-PRES-XXXXXX

5LLNL-PRES-XXXXXX

6LLNL-PRES-XXXXXX

7LLNL-PRES-XXXXXX

What is the best
way to pull a
container?

8LLNL-PRES-XXXXXX

What are we going to be talking about today?

1. How has the container ecosystem changed since 2014?

9LLNL-PRES-XXXXXX

What are we going to be talking about today?

1. How has the container ecosystem changed since 2014?
2. What about best practices?

10LLNL-PRES-XXXXXX

What are we going to be talking about today?

1. How has the container ecosystem changed since 2014?
2. What about best practices?
3. Can I simulate the pulling part of a container study (and build a tool for others)?

11LLNL-PRES-XXXXXX

What are we going to be talking about today?

1. How has the container ecosystem changed since 2014?
2. What about best practices?
3. Can I simulate the pulling part of a container study (and build a tool for others)?
4. What are "best practices" for pulling strategies, and how do they hold up?

12LLNL-PRES-XXXXXX

What are we going to be talking about today?

1. How has the container ecosystem changed since 2014?
2. What about best practices?
3. Can I simulate the pulling part of a container study (and build a tool for others)?
4. What are "best practices" for pulling strategies, and how do they hold up?
5. Why should I care?

13LLNL-PRES-XXXXXX

How has the container ecosystem
changed since 2014?

14LLNL-PRES-XXXXXX

How has the container ecosystem changed since 2014?

1. What we are interested in (that we can derive from registries):

Size of entire containers?
Size of layers?
Number of layers?
Image similarity?

15LLNL-PRES-XXXXXX

How has the container ecosystem changed since 2014?

1. What we are interested in (that we can derive from registries):

Size of entire containers?
Size of layers?
Number of layers?
Image similarity?

Research Software
Databases

Machine Learning
GitHub Orgs

16LLNL-PRES-XXXXXX

How has the container ecosystem changed since 2014?

1. What we are interested in (that we can derive from registries):

Size of entire containers?
Size of layers?
Number of layers?
Image similarity?

Dockerfile
 x 77k

Base Images

Research Software
Databases

Machine Learning
GitHub Orgs

17LLNL-PRES-XXXXXX

How has the container ecosystem changed since 2014?

1. What we are interested in (that we can derive from registries):

Size of entire containers?
Size of layers?
Number of layers?
Image similarity?

Registry

Image manifests
 layers
 sizes

Dockerfile
 x 77k

Base Images

Research Software
Databases

Machine Learning
GitHub Orgs

18LLNL-PRES-XXXXXX

How has the container ecosystem changed since 2014?

1. What we are interested in (that we can derive from registries):

Registry

Image manifests
 layers
 sizes

Dockerfile
 x 77k

Base Images

Research Software
Databases

Machine Learning
GitHub Orgs

Layer sizes
Image sizes
Layer counts

Image similarity

Dockerfile images

Base images

19LLNL-PRES-XXXXXX

How many tags does each base image have?

● Ranges from 1 to ~17k tags
● Mean 1842 tags, std 2,531 tags
● One outlier removed (nix/nixos) ~47k tags

20LLNL-PRES-XXXXXX

How many tags does each base image have?

● Ranges from 1 to ~17k tags
● Mean 1842 tags, std 2,531 tags
● One outlier removed (nix/nixos) ~47k tags

Tag counts reflects release frequency
(and often automation)

21LLNL-PRES-XXXXXX

How has number of layers changed over time?

● Mean 16.58 +/- 23.66
● More outliers over the years
● Yes, people are building >> 127 layers

22LLNL-PRES-XXXXXX

How has image size changed over time?

● Total size can be calculated - sum of layers
● Number of layers is relatively consistent…
● But size is trending larger

23LLNL-PRES-XXXXXX

How has image size changed over time?

24LLNL-PRES-XXXXXX

How has image size changed over time?

25LLNL-PRES-XXXXXX

"Just build smaller containers!"

26LLNL-PRES-XXXXXX

How has the container ecosystem
changed since 2014?

Containers are getting larger
Layer size is relatively constant

27LLNL-PRES-XXXXXX

How similar are containers since 2014?

28LLNL-PRES-XXXXXX

How similar are scientific Dockerfile based on layers?
These are layers from the Dockerfile images

528K layers
Treat layers as sentences in a document
word2vec embeddings
cosine similarity

29LLNL-PRES-XXXXXX

How similar are Dockerfile based on layer digests?
These are explicit layer digests (determining need to pull or not)

528K layers
Treat layers as sentences in a document
word2vec embeddings
cosine similarity

30LLNL-PRES-XXXXXX

What is the most commonly used base image?

● Algorithm provided by "guts" software
● Compares each image against database of common bases
● Similarity is based on similarity of paths (Jaccaard)

31LLNL-PRES-XXXXXX

What is the most commonly used base image?

● Algorithm provided by "guts" software
● Compares each image against database of common bases
● Similarity is based on similarity of paths (Jaccaard)

32LLNL-PRES-XXXXXX

How does container build strategy impact similarity?

33LLNL-PRES-XXXXXX

How does container build strategy impact similarity?

1. More similar containers mean redundancy of layers, and less space used on the filesystem and pull time

34LLNL-PRES-XXXXXX

How does container build strategy impact similarity?

1. More similar containers mean redundancy of layers, and less space used on the filesystem and pull time

1) Reasonable effort to create redundancy
- Real performance study containers

35LLNL-PRES-XXXXXX

How does container build strategy impact similarity?

1. More similar containers mean redundancy of layers, and less space used on the filesystem and pull time

1) Reasonable effort to create redundancy
- Real performance study containers

2) Best effort to create redundancy
- Best effort builds of the same

36LLNL-PRES-XXXXXX

How does container build strategy impact similarity?

1. More similar containers mean redundancy of layers, and less space used on the filesystem and pull time

1) Reasonable effort to create redundancy
- Real performance study containers

2) Best effort to create redundancy
- Best effort builds of the same

3) Little effort to create redundancy
- High redundancy (spack)

37LLNL-PRES-XXXXXX

How does container build strategy impact similarity?
Let's first look at containers from a real performance study

38LLNL-PRES-XXXXXX

Performance Study Containers

39LLNL-PRES-XXXXXX

Which container set?
▪ AWS and Google GPU containers

Performance Study Containers

40LLNL-PRES-XXXXXX

Which container set?
▪ AWS and Google GPU containers
▪ AWS and Google CPU containers

Performance Study Containers

41LLNL-PRES-XXXXXX

Which container set?
▪ AWS and Google GPU containers
▪ AWS and Google CPU containers
▪ Rocky bases for Compute Engine

Performance Study Containers

42LLNL-PRES-XXXXXX

Which container set?
▪ AWS and Google GPU containers
▪ AWS and Google CPU containers
▪ Rocky bases for Compute Engine
▪ Azure GPU

Performance Study Containers

43LLNL-PRES-XXXXXX

Which container set?
▪ AWS and Google GPU containers
▪ AWS and Google CPU containers
▪ Rocky bases for Compute Engine
▪ Azure GPU
▪ Azure CPU

Performance Study Containers

44LLNL-PRES-XXXXXX

How does container build strategy impact similarity?
Now let's take a slice of that set (from one cloud)

45LLNL-PRES-XXXXXX

Build strategy influences container similarity

Real performance study containers Best effort of same containers Spack

46LLNL-PRES-XXXXXX

The number of unique layer pulls per strategy:

Real performance study containers

45% of layers are unique pulls

Best effort of same containers

28% of layers are unique pulls

Spack

89% of layers are unique pulls

47LLNL-PRES-XXXXXX

The number of unique layer pulls per strategy:

Real performance study containers

45% of layers are unique pulls

Best effort of same containers

28% of layers are unique pulls

Spack

89% of layers are unique pulls

48LLNL-PRES-XXXXXX

How does container build strategy impact similarity?
Redundancy of layers increases similarity

49LLNL-PRES-XXXXXX

What about best practices?

50LLNL-PRES-XXXXXX

Are people using multi-stage builds?

● Look for more than one FROM in our database
● We find 2.56% of image builds use multi-build strategy

51LLNL-PRES-XXXXXX

Are people using docker "official" images?

● Look at FROM directive
● 14.77% of image base are from Docker Hub

52LLNL-PRES-XXXXXX

Are people using the "latest" tags?

● This is considered a bad practice (moving target)
● We can look at the FROM directive tag
● 5.3% of images use latest

53LLNL-PRES-XXXXXX

Are people using pinned image digests?

● This guarantees an exact build (version)
● Comes at the cost of security updates
● We can look for a sha256 instead of a tag
● Only 0.09 (less than 1%) found

54LLNL-PRES-XXXXXX

apt-get and install in the same line?

● 507,695 layers use apt-get
● Of that set, 94.3% also have apt-get install
● Of that set, 67.8% do a clean too

55LLNL-PRES-XXXXXX

apt-get and install in the same line?

● 507,695 layers use apt-get
● Of that set, 94.3% also have apt-get install
● Of that set, 67.8% do a clean too

56LLNL-PRES-XXXXXX

What about best practices?
People often don't follow them, but best that the tooling

implements them.

57LLNL-PRES-XXXXXX

What is more important, image size or
number of layers?

58LLNL-PRES-XXXXXX

Does the number of layers matter at all?

59LLNL-PRES-XXXXXX

I built a simulation tool "container-crafter" for pulling studies

● A config file is used to build mock containers.
● We control the layer count; total image size
● Each layer is guaranteed to be unique
● The tool will build to a specific URI
● Each layer only allowed up to 10GB

60LLNL-PRES-XXXXXX

I built a simulation tool "container-crafter" for pulling studies

Sizes chosen at percentile increments of 5
derived from the real data, with the exception of
the 95th-100th percentile that was broken into
an additional set of three ranges.

61LLNL-PRES-XXXXXX

What matter is total image size, not number of layers

The same total size split across 1-100 layers takes the same amount of time.
What explodes pulling time is just the total size of the image.
The number of layers largely doesn't matter.

Sizes between
14MB-19GB

62LLNL-PRES-XXXXXX

For the study, use a value that reflects actual practice

The same total size split across 1-100 layers takes the same amount of time.
What explodes pulling time is just the total size of the image.
The number of layers largely doesn't matter.

For further study, I chose
sizes 9 (median of the
dataset) and max 125

63LLNL-PRES-XXXXXX

What is more important, image size or
number of layers?

Image size!

64LLNL-PRES-XXXXXX

What is the best strategy for container pulling?

65LLNL-PRES-XXXXXX

Cloud Pulling Study

● Google Kubernetes Engine (GKE)
● 16 vCPU, 60GB RAM / node
● Node (cluster) sizes 4, 8, 32, 64, 128, and 256

66LLNL-PRES-XXXXXX

Cloud Pulling Study

● Google Kubernetes Engine (GKE)
● 16 vCPU, 60GB RAM / node
● Node (cluster) sizes 4, 8, 32, 64, 128, and 256

For each container (size and layers):
 A Job will be created to pull the container
 Kubernetes Event Exporter used to collect all events

n1-standard-64 was only 1.028x
faster, but 3.87x more expensive

67LLNL-PRES-XXXXXX

Cloud Pulling Study

● Google Kubernetes Engine (GKE)
● 16 vCPU, 60GB RAM / node
● Node (cluster) sizes 4, 8, 32, 64, 128, and 256

For each container (size and layers):
 A Job will be created to pull the container
 Kubernetes Event Exporter used to collect all events

Each experiment will be conducted several times to assess a setup

n1-standard-64 was only 1.028x
faster, but 3.87x more expensive

68LLNL-PRES-XXXXXX

Strategies for optimized container pulling in Kubernetes

● Use a local (cloud provided) registry
● Use a solid state drive (SSD) instead of persistent disk (HDD)
● Use image streaming (SOCI Snapshotter and similar)
● Use zstandard compression (greater than 3x faster than gzip)
● Preload images onto nodes (using a Daemonset)?

69LLNL-PRES-XXXXXX

Strategies for optimized container pulling in Kubernetes

● Use a local (cloud provided) registry (pulling latency)
● Use a solid state drive (SSD) instead of persistent disk (HDD) (FS latency)
● Use image streaming (SOCI Snapshotter and similar)
● Use zstandard compression (greater than 3x faster than gzip)
● Preload images onto nodes (using a Daemonset)?

70LLNL-PRES-XXXXXX

Strategies for optimized container pulling in Kubernetes

● Use a local (cloud provided) registry (pulling latency)
● Use a solid state drive (SSD) instead of persistent disk (HDD) (FS latency)
● Use image streaming (SOCI Snapshotter and similar)

1. First test with containers generated from simulation tool.
2. Then use real-world application containers.

71LLNL-PRES-XXXXXX

Strategies for optimized container pulling in Kubernetes

● Use a local (cloud provided) registry (pulling latency)
● Use a solid state drive (SSD) instead of persistent disk (HDD) (FS latency)
● Use image streaming (SOCI Snapshotter and similar)

1. First test with containers generated from simulation tool.
2. Then use real-world application containers.
3. Test node coordination

72LLNL-PRES-XXXXXX

What is the best strategy for container pulling?
Let's look at the results!

73LLNL-PRES-XXXXXX

Does pulling from a local registry improve pull times?
No, not really

ghcr.io

74LLNL-PRES-XXXXXX

Does pulling from a local registry improve pull times?
No, not really

ghcr.io

Pull time does not increase for
larger clusters!

75LLNL-PRES-XXXXXX

Does pulling from a local registry improve pull times?
No, not really

gcr.io

76LLNL-PRES-XXXXXX

Does pulling from a local registry improve pull times?
No, not really

ghcr.io

gcr.io

77LLNL-PRES-XXXXXX

Does pulling with local SSD improve pull times?
Yes! Often 1.25x

gcr.io

78LLNL-PRES-XXXXXX

Does pulling with local SSD improve pull times?
Yes! Often 1.25x

gcr.io

79LLNL-PRES-XXXXXX

Does pulling with image streaming improve pull times?
Impossibility, yes.

gcr.io

80LLNL-PRES-XXXXXX

Does pulling with image streaming improve pull times?
Impossibility, yes.

gcr.io

81LLNL-PRES-XXXXXX

Does pulling with image streaming improve pull times?
Impossibility, yes.

gcr.io

82LLNL-PRES-XXXXXX

Does pulling with image streaming improve pull times?
Real application containers for AMG, LAMMPS, OSU, Minife bullt with spack

gcr.io

83LLNL-PRES-XXXXXX

Image Streaming - why was it investigated in the first place?

"Image download accounts for 76% of container startup time, but on
average only 6.4% of the fetched data is actually needed for the container
to start doing useful work."

Harter et al FAST '16

https://www.usenix.org/node/194431

84LLNL-PRES-XXXXXX

Image Streaming - why was it investigated in the first place?

https://youtu.be/ZXM1gP4goP8

Faster Container Pulling in Kubernetes
The SOCI "Seekable OCI" Snapshotter

85LLNL-PRES-XXXXXX

Image Streaming - how does it work?
Step 1: We record the entrypoint to find "prioritized files"

https://github.com/containerd/stargz-snapshotter/blob/main/docs/estargz.md

86LLNL-PRES-XXXXXX

Image Streaming - how does it work?
Step 1: We record the entrypoint to find "prioritized files"

https://github.com/containerd/stargz-snapshotter/blob/main/docs/estargz.md

87LLNL-PRES-XXXXXX

Image Manifest List

docker pull

"My host is amd64" Image Manifest Referrers Manifest List

SBOM (software bill of materials)
SOCI Index
Squirrel Snacks?

SOCI Index

ztoc artifact

Image Streaming - how does it work?
Step 2: Image and table of contents (artifact) pushed to registry

88LLNL-PRES-XXXXXX

1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents

A snapshot is a view of the container filesystem, prepared from a layer

Image Streaming - how does it work?
Putting it all together!

89LLNL-PRES-XXXXXX

1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents
2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files

A snapshot is a view of the container filesystem, prepared from a layer

Image Streaming - how does it work?
Putting it all together!

90LLNL-PRES-XXXXXX

1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents
2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files
3. After the prioritized files are downloaded, we mark the container as ready (and it's ready much faster)

A snapshot is a view of the container filesystem, prepared from a layer

Image Streaming - how does it work?
Putting it all together!

91LLNL-PRES-XXXXXX

1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents
2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files
3. After the prioritized files are downloaded, we mark the container as ready (and it's ready much faster)
4. Additional content needed is loaded on demand using the distribution spec "resumable pull"

A snapshot is a view of the container filesystem, prepared from a layer

Image Streaming - how does it work?
Putting it all together!

https://github.com/opencontainers/distribution-spec/blob/main/spec.md

92LLNL-PRES-XXXXXX

1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents
2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files
3. After the prioritized files are downloaded, we mark the container as ready (and it's ready much faster)
4. Additional content needed is loaded on demand using the distribution spec "resumable pull"
5. From the user perspective, the container pulled a lot faster because we only actually pulled a small subset of files.

A snapshot is a view of the container filesystem, prepared from a layer

Image Streaming - how does it work?
Putting it all together!

93LLNL-PRES-XXXXXX

1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents
2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files
3. After the prioritized files are downloaded, we mark the container as ready (and it's ready much faster)
4. Additional content needed is loaded on demand using the distribution spec "resumable pull"
5. From the user perspective, the container pulled a lot faster because we only actually pulled a small subset of files.

A snapshot is a view of the container filesystem, prepared from a layer

Image Streaming - how does it work?
Putting it all together!

https://www.rfc-editor.org/rfc/rfc9110.html#name-range-requests

94LLNL-PRES-XXXXXX

1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents
2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files
3. After the prioritized files are downloaded, we mark the container as ready (and it's ready much faster)
4. Additional content needed is loaded on demand using the distribution spec "resumable pull"
5. From the user perspective, the container pulled a lot faster because we only actually pulled a small subset of files.

A snapshot is a view of the container filesystem, prepared from a layer

Since files needed later in execution are pulled on demand, we have to be cautious
about using that plugin for apps that require loading large data later in execution!

Image Streaming - how does it work?
Putting it all together!

95LLNL-PRES-XXXXXX

What is the best strategy for container pulling?
SSD is a good idea always, image streaming sometimes

96LLNL-PRES-XXXXXX

Node Coordination

97LLNL-PRES-XXXXXX

Does node coordination lead to slower pull times?
Are we limited by the slowest node?

Pull times didn't increase but…
Overall experiment time increased with cluster size

98LLNL-PRES-XXXXXX

Does node coordination lead to slower pull times?
Are we limited by the slowest node?

Event times are not coordinated (understandably) across nodes…
but it means we are limited by the slowest node

99LLNL-PRES-XXXXXX

Node Coordination
Nodes are less coordinated as nodes increase, we need to

better understand why.

100LLNL-PRES-XXXXXX

Takeaways

101LLNL-PRES-XXXXXX

What did we learn from this work?

● A container building strategy optimized for similarity in container layers, and a pulling strategy
(filesystem or algorithm) to decrease pull time can decrease total cost for a study.

This improvement becomes more salient when using expensive resources such as GPU, or an
auto-scaling strategy that provisions new nodes that don't have images cached.

102LLNL-PRES-XXXXXX

Let's calculate cost with respect to unique layers
Assuming:
- We have 10 total applications (what we had for our performance study)
- Each image has mean layer size (~12MB), and mean layers (16) (means from dataset of 77K Dockerfiles)

103LLNL-PRES-XXXXXX

Let's calculate cost with respect to unique layers
Assuming:
- We have 10 total applications (what we had for our performance study)
- Each image has mean layer size (~12MB), and mean layers (16) (means from dataset of 77K Dockerfiles)

Strategy: look at extremes
- In an ideal case, the first image pull (across nodes) pulls all layers (and they are cached)
- In the worst case, no layer redundancy means 16 new layers each time

104LLNL-PRES-XXXXXX

Let's calculate cost with respect to unique layers
Assuming:
- We have 10 total applications (what we had for our performance study)
- Each image has mean layer size (~12MB), and mean layers (16) (means from dataset of 77K Dockerfiles)

Strategy: look at extremes
- In an ideal case, the first image pull (across nodes) pulls all layers (and they are cached)
- In the worst case, no layer redundancy means 16 new layers each time

How many layer pulls?
- In the best (hypothetical) case of all the same layers we would pull only the equivalent of 1 container, 16 layers
 - This is not a realistic case because you can't have different apps with the exact same layers!
- In the worst case of all different layers, we would pull 10 x 16 == 160 layers

105LLNL-PRES-XXXXXX

Let's calculate cost with respect to unique layers
Assuming:
- We have 10 total applications (what we had for our performance study)
- Each image has mean layer size (~12MB), and mean layers (16) (means from dataset of 77K Dockerfiles)

Strategy: look at extremes
- In an ideal case, the first image pull (across nodes) pulls all layers (and they are cached)
- In the worst case, no layer redundancy means 16 new layers each time

How many layer pulls?
- In the best (hypothetical) case of all the same layers we would pull only the equivalent of 1 container, 16 layers
 - This is not a realistic case because you can't have different apps with the exact same layers!
- In the worst case of all different layers, we would pull 10 x 16 == 160 layers

Sizes:
- In the best case, mean layer size 12MB x 16 == 192 MB
- In the worst case, 12MB x 160 == 1920 MB

106LLNL-PRES-XXXXXX

Let's calculate cost with respect to unique layers
Assuming:
- We have 10 total applications (what we had for our performance study)
- Each image has mean layer size (~12MB), and mean layers (16) (means from dataset of 77K Dockerfiles)

Strategy: look at extremes
- In an ideal case, the first image pull (across nodes) pulls all layers (and they are cached)
- In the worst case, no layer redundancy means 16 new layers each time

How many layer pulls?
- In the best (hypothetical) case of all the same layers we would pull only the equivalent of 1 container, 16 layers
 - This is not a realistic case because you can't have different apps with the exact same layers!
- In the worst case of all different layers, we would pull 10 x 16 == 160 layers

Sizes:
- In the best case, mean layer size 12MB x 16 == 192 MB
- In the worst case, 12MB x 160 == 1920 MB

Pull times (assuming 3-5MB per second)
- In the best case, 192 MB will take: 39-64 seconds
- In the worst case, 1920 MB will take: 384-640 seconds (6.4 - 11 minutes)
- Differences 345-576 seconds (5.75-9.6 minutes)

107LLNL-PRES-XXXXXX

Let's calculate cost with respect to unique layers
Assuming:
- We have 10 total applications (what we had for our performance study)
- Each image has mean layer size (~12MB), and mean layers (16) (means from dataset of 77K Dockerfiles)

Strategy: look at extremes
- In an ideal case, the first image pull (across nodes) pulls all layers (and they are cached)
- In the worst case, no layer redundancy means 16 new layers each time

How many layer pulls?
- In the best (hypothetical) case of all the same layers we would pull only the equivalent of 1 container, 16 layers
 - This is not a realistic case because you can't have different apps with the exact same layers!
- In the worst case of all different layers, we would pull 10 x 16 == 160 layers

Sizes:
- In the best case, mean layer size 12MB x 16 == 192 MB
- In the worst case, 12MB x 160 == 1920 MB

Pull times (assuming 3-5MB per second)
- In the best case, 192 MB will take: 39-64 seconds
- In the worst case, 1920 MB will take: 384-640 seconds (6.4 - 11 minutes)
- Differences 345-576 seconds (5.75-9.6 minutes)

For this hypothetical scenario, we estimate
5.75 - 9.6 minutes more of node running
time to account for pulling. Whether this
amount of time is significant depends on

the size of the cluster, the cost of the
nodes, and the budget. E.g., the

p5.48xlarge node at AWS is $98.32/hour.
For a size 32 cluster (~$3146/hour), it

would be an additional appox $301 - $503.

108LLNL-PRES-XXXXXX

Assuming:

- 10 images like pytorch/pytorch (with nothing else)
- Layers include:

 30MB
 7.3MB
 3.6GB (3622 MB)

What about with a ML oriented image?

109LLNL-PRES-XXXXXX

Assuming:

- 10 images like pytorch/pytorch (with nothing else)
- Layers include:

 30MB
 7.3MB
 3.6GB (3622 MB)

Sizes:

- In the best case, we pull 3 layers == 3659.3 MB
- In the worst case, 3659.3 3 layers x 10 == 36593 MB (36.593 GB)

What about with a ML oriented image?

110LLNL-PRES-XXXXXX

Assuming:

- 10 images like pytorch/pytorch (with nothing else)
- Layers include:

 30MB
 7.3MB
 3.6GB (3622 MB)

Sizes:

- In the best case, we pull 3 layers == 3659.3 MB
- In the worst case, 3659.3 3 layers x 10 == 36593 MB (36.593 GB)

Pull times (assuming 3-5MB per second)

- In the best case, 192 MB will take: 732-1219 seconds (12-20 minutes)
- In the worst case, pulling takes: 7318-12198 seconds (122-203 minutes)
- Differences 6586-10979 seconds (110-183 minutes)

What about with a ML oriented image?

111LLNL-PRES-XXXXXX

What about with a ML oriented image?
Assuming:

- 10 images like pytorch/pytorch (with nothing else)
- Layers include:

 30MB
 7.3MB
 3.6GB (3622 MB)

Sizes:

- In the best case, we pull 3 layers == 3659.3 MB
- In the worst case, 3659.3 3 layers x 10 == 36593 MB (36.593 GB)

Pull times (assuming 3-5MB per second)

- In the best case, 192 MB will take: 732-1219 seconds (12-20 minutes)
- In the worst case, pulling takes: 7318-12198 seconds (122-203 minutes)
- Differences 6586-10979 seconds (110-183 minutes)

For this hypothetical scenario with ML
images, we estimate 110-183 minutes

more of node running time to account for
pulling. Given the p5.48xlarge node at
$98.32/hour (on demand) for a size 32
cluster (~$3146/hour), it would be an

additional appox $5768 - $9595.3.

112LLNL-PRES-XXXXXX

Some Additional Strategies

113LLNL-PRES-XXXXXX

What else can we do in these cases?
Other strategies for caching image layers…

● Use something like AWS Parallel Cluster where you can pre-pull to a head node with a shared
volume, and the workers then create and bind to it.

● If you are auto-scaling, use a setup that mounts a read only volume with containers that are
pre-pulled.

● Use a pull-through cache that provides a local registry cache alongside your cluster.

● For innovation, we can explore other algorithms for predicting content to pull, compression
algorithms, and improved file-system latency.

114LLNL-PRES-XXXXXX

What did we learn from this work?
It is our responsibility to be aware of cost savings

● A container building strategy optimized for similarity in container layers can increase layer
redundancy, decreasing time needed to pull and thus decreasing total time and cost for a study.

● Extra time is accumulated as clusters get larger, a result that could be due to decreases in node
coordination and needing to wait for the slowest node to finish pulling. This finding is interesting
and warrants further exploration for behavior and solutions.

115LLNL-PRES-XXXXXX

What did we learn from this work?
It is our responsibility to be aware of cost savings

● A container building strategy optimized for similarity in container layers can increase layer
redundancy, decreasing time needed to pull and thus decreasing total time and cost for a study.

● Extra time is accumulated as clusters get larger, a result that could be due to decreases in node
coordination and needing to wait for the slowest node to finish pulling. This finding is interesting
and warrants further exploration for behavior and solutions.

● Container streaming is an ideal strategy for quickly starting containers that are large, but caution
should be used if large amounts of new data are needed for application execution later in the
run than is recorded by the snapshotter tool.

116LLNL-PRES-XXXXXX

Interesting Findings

117LLNL-PRES-XXXXXX

The Genghis Khan of container layers!
The outlier in the layer set - a digest that appeared 67,897 times!

● An empty set of 32 bytes associated with a WORKDIR directive

118LLNL-PRES-XXXXXX

The Genghis Khan of container layers!
The outlier in the layer set - a digest that appeared 67,897 times!

● An empty set of 32 bytes associated with a WORKDIR directive
● But… only for cases when the directory already existed.

119LLNL-PRES-XXXXXX

The Genghis Khan of container layers!
The outlier in the layer set - a digest that appeared 67,897 times!

● An empty set of 32 bytes associated with a WORKDIR directive
● But… only for cases when the directory already existed.
● Turns out… there is an "empty layer" flag in the image config. If

a tool decides not to set that flag for some reason, the tool needs
to ship a valid tar+gzip, so even without any files being
packaged, this takes up space in the tar and gzip headers.

120LLNL-PRES-XXXXXX

The Genghis Khan of container layers!
The outlier in the layer set - a digest that appeared 67,897 times!

● An empty set of 32 bytes associated with a WORKDIR directive
● But… only for cases when the directory already existed.
● Turns out… there is an "empty layer" flag in the image config. If

a tool decides not to set that flag for some reason, the tool needs
to ship a valid tar+gzip, so even without any files being
packaged, this takes up space in the tar and gzip headers.

This was implemented before it was discovered that /dev/null is a
valid empty file.

121LLNL-PRES-XXXXXX

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

● I started with an understanding that the limit is 127 layers

122LLNL-PRES-XXXXXX

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

● I started with an understanding that the limit is 127 layers
● In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver

123LLNL-PRES-XXXXXX

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

● I started with an understanding that the limit is 127 layers
● In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
● But containerd doesn't set a maximum…

124LLNL-PRES-XXXXXX

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

● I started with an understanding that the limit is 127 layers
● In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
● But containerd doesn't set a maximum…

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

125LLNL-PRES-XXXXXX

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

● I started with an understanding that the limit is 127 layers
● In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
● But containerd doesn't set a maximum…

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

● The limit was originally enforced because of a limit with mounting layers
○ Specifically the length of an argument to a syscall that led to technical maximums

126LLNL-PRES-XXXXXX

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

● I started with an understanding that the limit is 127 layers
● In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
● But containerd doesn't set a maximum…

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

● The limit was originally enforced because of a limit with mounting layers
○ Specifically the length of an argument to a syscall that led to technical maximums

● But this depends on the operator system, kernel version, and container runtime!

127LLNL-PRES-XXXXXX

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

● I started with an understanding that the limit is 127 layers
● In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
● But containerd doesn't set a maximum…

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

● The limit was originally enforced because of a limit with mounting layers
○ Specifically the length of an argument to a syscall that led to technical maximums

● But this depends on the operator system, kernel version, and container runtime!
● containerd and buildkit use a practical approach that doesn't validate (and allows the error to propagate)

128LLNL-PRES-XXXXXX

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

● I started with an understanding that the limit is 127 layers
● In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
● But containerd doesn't set a maximum…

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

● The limit was originally enforced because of a limit with mounting layers
○ Specifically the length of an argument to a syscall that led to technical maximums

● But this depends on the operator system, kernel version, and container runtime!
● containerd and buildkit use a practical approach that doesn't validate (and allows the error to propagate)
● docker hard codes manual checks so you don't get to that point

129LLNL-PRES-XXXXXX

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

● I started with an understanding that the limit is 127 layers
● In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
● But containerd doesn't set a maximum…

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

● The limit was originally enforced because of a limit with mounting layers
○ Specifically the length of an argument to a syscall that led to technical maximums

● But this depends on the operator system, kernel version, and container runtime!
● containerd and buildkit use a practical approach that doesn't validate (and allows the error to propogate)
● docker hard codes manual checks so you don't get to that point
● docker will fail on this mount step after pulling the layers…

130LLNL-PRES-XXXXXX

131LLNL-PRES-XXXXXX

The "refnode" is following the same convention!

132LLNL-PRES-XXXXXX

Let's make a SOCI snapshotter daemonset!
This is much easier to install!

kubectl apply -f soci-installer.yaml

This logic can be extended:

● To support other authentication schemes
● Other clouds (that don't have flags already)

133LLNL-PRES-XXXXXX

The "refnode" is following the same convention!

Thank you!
sochat1@llnl.gov

Disclaimer
This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or Lawrence Livermore National
Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States government or Lawrence Livermore National Security, LLC, and shall not
be used for advertising or product endorsement purposes.

