Trends and Practices for Pulling HPC Containers in Cloud

Vanessa Sochat

Principal Computer Scientist
Lawrence Livermore National Laboratory

LLNL-PRES-872719

This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract

M Lawrence Livermore
DE-AC52-07NA27344. Lawrence Livermore National Security, LLC National Laboratory

@PLOS ‘ ONE

Check for
updates

E OPENACCESS

Citation: Kurtzer GM, Sochat \V, Bauer MW (2017)
Singularity: Scientific containers for mobility
of compute. PLoS ONE 12(5): e0177459. hitps

doi.org 1/journal.pone.0177459

Editor: Attila Gursoy, Koc Universitesi, TURKEY
Received: December 20, 2016

Accepted: April 27, 2017

Published: May 11, 20

Copyright: This is an open access article, free of all
copyright, and may be freely reproduced,
distributed, transmitted, modified, built upon, or
otherwise used by amyone for any lawful purpose.
The work is made available under the Cr

ublic domain dedication.

Data Availability Statement: The source code for
Singularity is available at https=/g

singularity sarity, and complete
documentation at hitp://singularity. Iol.goy

Funding: Author VS is supported by Stanford
Research Computing (IT) and the Stanford School
of Medicine, and author MWB is supported by the
Frankfurt Institute of Advanced Studies (FIAS).
Author GMK is an employee of Lawrence Berkeley
National Lab, the Department of Energy, and UC
Regents. This manuscript has been authored by an
author (GMK) at Lawrence Berkeley National
Laboratory under Contract No. DE-AC02-
05CH11231 vith the U.S. Department of Energy.

RESEARCH ARTICLE
Singularity: Scientific containers for mobility
of compute

Gregory M. Kurtzer', Vanessa Sochat?*, Michael W. Bauer'**

1 High Performance Computing Services, Lawrence Berkeley National Lab, Berkeley, CA, United States of
America, 2 Stanford Research Computing Center and School of Medicine, Stanford University, Stanford, CA,
United States of America, 3 Department of Electrical Engineering and Computer Science, University of
Michigan, Ann Arbor, MI, United States of America, 4 Experimental Systems, GSI Helmholtzzentrum fir
Schwerionenforschung, Darmstadt, Germany

* d.edu

Abstract

Here we present Singularity, software developed to bring containers and reproducibility to
scientific computing. Using Singularity containers, developers can work in reproducible envi-
ronments of their choosing and design, and these complete environments can easily be cop-
ied and executed on other platforms. Singularity is an open source initiative that hamesses
the expertise of system and software engineers and researchers alike, and integrates seam-
lessly into common workflows for both of these groups. As its primary use case, Singularity
brings mobility of computing to both users and HPC centers, providing a secure means to
capture and distribute software and compute environments. This ability to create and deploy
reproducible environments across these centers, a previously unmet need, makes Singular-
ity a game changing development for computational science.

Introduction

The landscape of scientific computing is fluid. Over the past decade and a irtualization
has gone from an engineering toy to a global infrastructure necessity, and the evolution of
related technologies has thus flourished. The currency of files and folders has changed to appli-
cations and operating systems. The business of Supercomputing Centers has been to offer scal-
able computational resources to a set of users associated with an institution or group [1]. With
this scale came the challenge of version control to provide users with not just up-to-date soft-
ware, but multiple versions of it. Software modules [2, 3], virtual environments [4, 5], along
with intelligently organized file systems [6] and permissions [7] were essential developments
to give users control and reproducibility of work. On the administrative side, automated builds
and server configuration [8, 9] have made maintenance of these large high-performance com-
puting (HPC) clusters possible. Job schedulers such as SLURM [10] or SGE [11] are the meta-
phorical governors to control these custom analyses at scale, and are the primary means of
relay between administrators and users. The user requires access to consume resources, and
the administrator wants to make sure that the user has the t nd support to make the most
efficient use of them.

May 11,2017

@ PLOS | ONE

Check for
updates

E OPENACCESS

Citation: Sochat W, Prybol CJ. Kurtzer GM (2017)
Enhancing reproducibility in scientific computing:
Metrics and registry for Singularity containers.
PLoS ONE 12(11): e0188511. hitps//doi.org

1371/journal.poi

Editor: Christophe Antoniewski, CNRS UMR7622
& University Paris 6 Pierre-et-Marie-Curie, FRANCE

Received: July 4, 2017
Accepted: November 8, 2017
Published: November 29, 2017

Copyright: © 2017 Sochat et al. This is an open
access article distributed under the terms of the

t , which
permits unrestricted use, distribution, and
reproduction in any medium, provided the original
author and source are credited.

c)i ibu en:

Data Availability Statement: The Singularity
Python software is available at hitps://v

or
Singularity Hub is available for use a
S ty-hub.org.
Funding: Vanessa Sochat is supported by Stanford
Research Computing and the School of Medicine.
The funders had no role in study design, data
collection and analysis, decision to publish, or
preparation of the manuscript.

Competing interests: The authors have declared
that no competing interests exist.

PLOS ONE |

RESEARCH ARTICLE

Enhancing reproducibility in scientific
computing: Metrics and registry for
Singularity containers

Vanessa V. Sochat' *, Cameron J. Prybol?, Gregory M. Kurtzer®

1 Stanford Research Computing Center and School of Medicine, Stanford University, Stanford, CA, United
States of America. 2 Stanford University Department of Genetics, Stanford University, Stanford, CA, United
States of America, 3 High Performance Computing Services, Lawrence Berkeley National Lab, Berkeley, CA,
United States of America

ford.edu

Abstract

Here we present Singularity Hub, a framework to build and deploy Singularity containers for
mobility of compute, and the singularity-python software with novel metrics for assessing
reproducibility of such containers. Singularity containers make it possible for scientists and
developers to package reproducible software, and Singularity Hub adds automation to this
workflow by building, capturing metadata for, visualizing, and serving containers program-
matically. Our novel metrics, based on custom filters of content hashes of container con-
tents, allow for comparison of an entire container, including operating system, custom
software, and metadata. First we will review Singularity Hub's primary use cases and how
the infrastructure has been designed to support modern, common workflows. Next, we con-
duct three analyses to demonstrate build consistency, reproducibility metric and perfor-
mance and interpretability, and potential for discovery. This is the first effort to demonstrate
a rigorous assessment of measurable similarity between containers and operating systems.
We provide these capabilities within Singularity Hub, as well as the source software singu-
larity-python that provides the underlying functionality. Singularity Hub is available at https://
singularity-hub.org, and we are excited to provide it as an openly available platform for build-
ing, and deploying scientific containers.

1 Introduction
The modern scientist is challenged with the responsibilities of having expertise in a field, pro-
curing funding, teaching, and publishing to maintain a career. The publication that th

entists produce are implicitly expected to be “reproducible”, meaning that they document and
make available the methods, to repeat experiments and r pro-
duce similar or identical results. :
vere not reproducible by other trained scientis
igation and di

he “reproducibility crisis” [1-3] revealed that a large propor-

tion of publications . What followed was
powerful, proactive action: an inv
data sharing, and di:

cussion about standards for public:
emination of code and tools for reproducible science [1-6].

511 November 29,2017

What is the best

way to pull a
container?

N

What are we going to be talking about today?

1. How has the container ecosystem changed since 20147

What are we going to be talking about today?

1. How has the container ecosystem changed since 20147
2. What about best practices?

What are we going to be talking about today?

1. How has the container ecosystem changed since 20147
2. What about best practices?
3. Can | simulate the pulling part of a container study (and build a tool for others)?

What are we going to be talking about today?

1. How has the container ecosystem changed since 20147

2. What about best practices?
3. Can | simulate the pulling part of a container study (and build a tool for others)?

4. What are "best practices" for pulling strategies, and how do they hold up?

What are we going to be talking about today?

1. How has the container ecosystem changed since 20147

2. What about best practices?
3. Can | simulate the pulling part of a container study (and build a tool for others)?

4. What are "best practices" for pulling strategies, and how do they hold up?
5. Why should | care?

How has the container ecosystem
changed since 20147

How has the container ecosystem changed since 2014?

1. What we are interested in (that we can derive from registries):

Size of entire containers?
Size of layers?

Number of layers?

Image similarity?

How has the container ecosystem changed since 2014?

1. What we are interested in (that we can derive from registries):

Size of entire containers?
Size of layers?

Number of layers?

Image similarity?

Research Software
Databases

Machine Learning
GitHub Orgs

How has the container ecosystem changed since 2014?

1. What we are interested in (that we can derive from registries):

Size of entire containers?
Size of layers?

Number of layers?

Image similarity?

Research Software

Databases Dockerfile

X 77k

Machine Learning Base Images

GitHub Orgs

How has the container ecosystem changed since 2014?

1. What we are interested in (that we can derive from registries):

Size of entire containers?
Size of layers?

Number of layers?

Image similarity?

Research Software

e - Dockerfile Registry

X 77k
Image manifests
Base Images layers

Machine Learning ,
GitHub Orgs SIZES

How has the container ecosystem changed since 2014?

1. What we are interested in (that we can derive from registries):

Base images

Layer sizes

Research Software Image sizes

Databases 3°7°7k:rﬁ'e Rty Layer counts

Image manifests
Base Images layers

Machine Learning _
GitHub Orgs SIZES

Image similarity

Dockerfile images

How many tags does each base image have?

Distribution of Tags per Image for 1520 Base Images

800 -

700 -

600 - e Ranges from 1 to ~17k tags
e Mean 1842 tags, std 2,531 tags

500 - e One outlier removed (nix/nixos) ~47k tags

Count

400 -
300 -
200 -

100 -

Illl-lllll-._ | |
0

I I
2500 5000 7500 10000 12500 15000 17500

Tags

How many tags does each base image have?

Distribution of Tags per Image for 1520 Base Images

800 -

700 -

600 - e Ranges from 1 to ~17k tags

e Mean 1842 tags, std 2,531 tags

E 2003 e One outlier removed (nix/nixos) ~47k tags
S a00 -

300 -

200 -

Tag counts reflects release frequency

100 - (and often automation)

4 III.II.IIII. | |

I I
2500 5000 7500 10000 12500 15000 17500

Tags

Layers per image

How has number of layers changed over time?

Number of layers per image by Year

year
= 2014
== 2015
== 2016
== 2017 ¢ +
2018

150.0 === 2019

B 2020 ’ *
M T B

¢ ¢

175.0

L X 2

2021
2022
N 2023
N 2024

=
N
il
o

e Mean 16.58 +/- 23.66
e More outliers over the years
e Yes, people are building >> 127 layers

£

100.0

NGRS O S S

75.0

|
jféé%i %

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

& e
BB SCOE W D S D

SO WMEE WO S &> &

How has image size changed over time?

Total Image Sizes by Year

¢
4
IIiIl\
16.0 ’ g

| .

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

year
28.0 = 2014
= 2015 . .
2016 '
2017
26.0 mm 2018
B 2019
2020 ’
B 2021
24.0 gy 2022
2023

e Total size can be calculated - sum of layers
e Number of layers is relatively consistent...
e But size is trending larger

. 2024
22.0

;
200 .;};. |
__IB Jr
l
:

Log of Size (bytes)

18.0

»>e
- <
>
-

14.0

How has image size changed over time?

Total Image Sizes by Year

year

28.0 = 2014
= 2015 . .
2016 '
2017

26.0 mm 2018
EE 2019

> wo
>

N 2020
N 2021
24.0 N 2022
N 2023
N 2024

)
. %
- .
¢

N
i
o

N
@
o

Log of Size (bytes)

=
©
o

. N
; ' : CONTAINERSLIMBOI

i
ooy

16.0

14.0

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

How has image size changed over time?

Total Image Sizes by Year

year
28.0 2014

. ¢
2015 ° .
= 2016 $ ‘
= 2017 3 > A
26.0 mm 2018 ‘ ! :
= 2019 *
= 2020 ‘ ¢ :
2021
= 24.0 w2022
] N 2023 :
2, 2024
2 22,0
0]
N
o)
5200 |,
o
o
18.0 : 0
.
$
. i
I Lo ,
i ! ICONTI
z * ° imgfip.com ™
¢

14.0

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024
Year

How has the container ecosystem
changed since 20147

Containers are getting larger
Layer size Is relatively constant

How similar are containers since 20147

counts

1.0 A

0.8

0.6

0.4

0.2 1

0.0

How similar are scientific Dockerfile based on layers?
These are layers from the Dockerfile images

1€9 Cosine Similarity for 77K Scientific Docker Images

528K layers

Treat layers as sentences in a document
word2vec embeddings

cosine similarity

cosine

How similar are Dockerfile based on layer digests?
These are explicit layer digests (determining need to pull or not)

1e10 Cosine Similarity for 582K Unique Image Layers

528K layers

Treat layers as sentences in a document
word2vec embeddings

cosine similarity

cosine

What is the most commonly used base image?

TABLE III e Algorithm provided by "guts" software
BASE IMAGE CLASSIFICATION e Compares each image against database of common bases
e Similarity is based on similarity of paths (Jaccaard)

Count Base Image
debian 393

alpine 95

ubuntu 74

centos 64

fedora 15

rockylinux 11
busybox 4

What is the most commonly used base image?

TABLE III e Algorithm provided by "guts" software
BASE IMAGE CLASSIFICATION e Compares each image against database of common bases
e Similarity is based on similarity of paths (Jaccaard)

Count Base Image
debian 393
alpine 95 e
Similarity Score Distribution Across Images
ubuntu 74
centos 64
fedora 15
rockylinux 11 %
busybox 4 ©

50
i ..Il II
0
0.6 0.7 0.8 0.9 1.0

score

How does container build strategy impact similarity?

How does container build strategy impact similarity?

1. More similar containers mean redundancy of layers, and less space used on the filesystem and pull time

CONTAINER 2025

j

How does container build strategy impact similarity?

1. More similar containers mean redundancy of layers, and less space used on the filesystem and pull time

CONTAINER 2025

1) Reasonable effort to create redundancy
- Real performance study containers

How does container build strategy impact similarity?

1. More similar containers mean redundancy of layers, and less space used on the filesystem and pull time

CONTAINER 2025

2) Best effort to create redundancy (i
- Best effort builds of the same

1) Reasonable effort to create redundancy
- Real performance study containers

How does container build strategy impact similarity?

1. More similar containers mean redundancy of layers, and less space used on the filesystem and pull time

CONTAINER 2025

2) Best effort to create redundancy (i
- Best effort builds of the same

1) Reasonable effort to create redundancy
- Real performance study containers

3) Little effort to create redundancy
- High redundancy (spack)

How does container build strategy impact similarity?
Let's first look at containers from a real performance study

Performance Study Containers .

VUUVUg U SXEocH
EEEEEEEan D 3E]
S880 08¢ oYL oG
SEE8 8 Lazdx
== 2=a22E9c3
b v 1] of%a
Sc33P95P0XEo0 RS
gvoaLuouof DL
CoDCOoQ sXoam
og T aRcds5P5NG
QusS8VEw 3.9
BZExDEaE SO
gx L8=1mE ot DN
£E DE—EI 0o
EE = v g
. =3 £
& o g Ec
5 E
° g 8

33ttt 3F o0
CQ.Q.CCCG\D.CE'>"
TUUDCTL 0T T
358330523088
3 3 [T
acoaacNglChEn
90008 RYas3
EXOSUERRLEEE
EE o sl YSEs2 5L
s-E2ESESr 528
B
P fTe8g88Ey
- _—
E GEEE 95T
== =]
EEEQE 5
§E 4
Lo
o
-
£

kripke~cgu: rocky-8

-ubuntu2204

gpu-ubuntu2204
gpu-ubuntu2204

pc-gpu
hpc-
minife:azure-'r:pc-gpu-ubuntu2204
pc-
lammps-gpu:azure-hpc-ubuntu2204
pytorch-resnet-experiment:azure-gpu
pytorch-resnet-experiment:libfabric-gpu

amg:azure-

magma:azure-h
osu-gpu:azure-|

hpc-vanilla
r-cpu:azure

mt-gemm:azure-hpc-1k
S-Cpu:azure-
quicksilve

lammps:

-hpc
hgc

stream:azure-

amg2023:azure-hpc-cpu-int64-zen3

magma:libfabric
mixbench:libfabric
lammps-gpu:libfabric
osu-gpu:libfabric
Ia%(hos:llbfabnc-gpu-zen4
nek5000:libfabric

laghos:gpu-zen4

mlnlfe:google-gEu
lammps-gpu:kokkos-reax
mt-gemm:latest
lammps-gpu:google-gpu
amg2023:spack-slim
osu-gpu:latest

mt-gemm:cpu-zen4

mixbench:cpu

single-node:cpu

laghos:cpu-zen4

minife:cpu-zen4
lammps-cpu:libfabric-zen4
mt-gemm:libfabric-cpu-zen4-9k
mixbench:libfabric-cpu
stream:libfabric-cpu-zen4
kripke-cpu:libfabric-zen4
lammps-cpu:rocky-8
quicksilver-cpu:rocky-8
kripke-cpu:rocky-8
magma:azure-hpc-gpu-ubuntu2204
amg:azure-hpc-gpu-ubuntu2204
minife:azure-hpc-gpu-ubuntu2204
osu-gpu:azure-hpc-gpu-ubuntu2204
lammps-gpu:azure-hpc-ubuntu2204
pytorch-resnet-experiment:azure-gpu
pytorch-resnet-experiment:libfabric-gpu
mt-gemm:azure-hpc-1k
lammps-cpu:azure-hpc-vanilla
quicksilver-cpu:azure-hpc
stream:azure-hpc :
amg2023:azure-hpc-cpu-int64-zen3

Performance Study Containers .

Which container set?
= AWS and Google GPU containers

magma:libfabric
mixbench:libfabric

laghos:libfabric-g

T U SXHE D Hg ISttt 5T 00
:'::n.mgo.gaco.accchCr:u>‘~
GO0 OLEoRE U000 00 T
NENGrB e8NS g NNNE SNNGY
323 0CETR 38 REYEaEEE
SOSXESaGRIcULa oY asS
S8288on s EXSSEF B0 0
H - =D = —_ =2 v Ul
nEl5P3n8EERECECR= 0y
xo=ZaE80 0 FPES258 522
EE-E?EE’% o PEEZEPS2ES
Ea a 4 VB U= VEY
Qo E E WECEUTT
£ E® Ao xXEQEY
£ E ECESS B
© £ L—E
.] EE 7%

L5

o

i

£

cpu:rocky-8

kripke

SESTT I SN
ococococoaard=
ANRNADPYE
S5 333pLag8p
P = = e =1
CCCCCRALUYUN
S3333gMlsQm
080005535
33P77E=R93
S3ISSVVL =50
a2aaf8gcEIL
oDOE.E 89S0l
uuuugwsws_
222953 5a%
LELE NI 0¥
vovova?SELL
e b b b zigw X as
S>333300 o
NNNNQc,), £
TROCDAY
Soi3225 &
EEE £ U
58 EPET -
© ESESE
g "8mgl

=g

a

-hpc
hgc

stream:azure-

amg2023:azure-hpc-cpu-int64-zen3 -

magma:libfabric
mixbench:libfabric
lammps-gpu:libfabric
osu-gpu:libfabric
Iaq(hos:llbfabnc-gpu-zen4
nek5000:libfabric

laghos:gpu-zen4

mlnlfe:google-gEu
lammps-gpu:kokkos-reax
mt-gemm:latest
lammps-gpu:google-gpu
amg2023:spack-slim
osu-gpu:latest

mt-gemm:cpu-zen4

mixbench:cpu

single-node:cpu

laghos:cpu-zen4

minife:cpu-zen4
lammps-cpu:libfabric-zen4
mt-gemm:libfabric-cpu-zen4-9k
mixbench:libfabric-cpu
stream:libfabric-cpu-zen4
kripke-cpu:libfabric-zen4
lammps-cpu:rocky-8
quicksilver-cpu:rocky-8
kripke-cpu:rocky-8
magma:azure-hpc-gpu-ubuntu2204
amg:azure-hpc-gpu-ubuntu2204
minife:azure-hpc-gpu-ubuntu2204
osu-gpu:azure-hpc-gpu-ubuntu2204
lammps-gpu:azure-hpc-ubuntu2204
pytorch-resnet-experiment:azure-gpu
pytorch-resnet-experiment:libfabric-gpu
mt-gemm:azure-hpc-1k
lammps-cpu:azure-hpc-vanilla
quicksilver-cpu:azure-hpc
stream:azure-hpc :
amg2023:azure-hpc-cpu-int64-zen3

Performance Study Containers .

Which container set?
= AWS and Google GPU containers
= AWS and Google CPU containers

magma:libfabric
mixbench:libfabric
lammps-gpu:libfabric
osu-gpu:libfabric
Iaq(hos:llbfabnc-gpu-zen4
nek5000:libfabric

laghos:gpu-zen4
mlnlfe:google-gEu
lammps-gpu:kokkos-reax
mt-gemm:latest
lammps-gpu:google-gpu
amg2023:spack-slim
osu-gpu:latest

mt-gemm:cpu-zen4

mixbench:cpu

single-node:cpu

laghos:cpu-zen4

minife:cpu-zen4
lammps-cpu:libfabric-zen4
mt-gemm:libfabric-cpu-zen4-9k
mixbench:libfabric-cpu
stream:libfabric-cpu-zen4
kripke-cpu:libfabric-zen4
lammps-cpu:rocky-8
quicksilver-cpu:rocky-8
kripke-cpu:rocky-8
magma:azure-hpc-gpu-ubuntu2204
amg:azure-hpc-gpu-ubuntu2204
minife:azure-hpc-gpu-ubuntu2204
osu-gpu:azure-hpc-gpu-ubuntu2204
lammps-gpu:azure-hpc-ubuntu2204
pytorch-resnet-experiment:azure-gpu
pytorch-resnet-experiment:libfabric-gpu
mt-gemm:azure-hpc-1k
lammps-cpu:azure-hpc-vanilla
quicksilver-cpu:azure-hpc
stream:azure-hpc :
amg2023:azure-hpc-cpu-int64-zen3

VUUUG U SXE SER ST IS T Y STTo0otIITTISXxoYYm
SECEEC o n.m9.5go.o.cccma.c:n>" too0oooaa-=22c
8000 00U OVLTRe V00004 V80T ONNNNNDOLELS T
COOCOCNOCN T 5© /) |, CN N NN ONNESTENNANNN T o N
Moot e L D e U= T C O T C O Y [¥] [CRS RN N h
a 3835 8E5U5239833VeE3V00 0323225 cc>55w
= 2= PO EDPE 3 aCO0RRE NS CE S EEEEEEZSURRe
© SO O8Y ESQGUUcU0S L eYa53555555mlaRnE
Euo.n.oos'/imgcum‘-’llséﬁd:géﬂa“ﬁ.EE&S&Dggggg“ﬁagsé‘r
CODCO0 XM =2HlEtau=tavY i VS c=cgd >
Og il eancl S5 3n8EERECE o= s 055555 5%Y 8w
"] =S CoO=mUY —Q0v¥so3svoussofa
Sl 3ExoEaESo 0 T GRESCECR 523 X000 asEESLPY
X 28w E S N O © £E=9 N

FECPBECEDT LD I QO COBEZEPPOOEEVEgOR Y
EE = 9 82 g VOO VEYRLUOLooEGSS 2
@ 2 £ WeLELmY ol885aTCo3n
o~ o £ © a=XEv== ccccIxor2¥ o
= £ =E0g 3 T T NG ae e
£ EEEQE T goopdoPSELY 5
g 5= EERE ~ 5555385°83 R
= = GE @ NNNNQe, EO ®
8, TROCDAY m
g o
A soezals § O
£ cogs Y N
o6 EPEC T o

T ESE5E
S5 £
E "8=gd @

&g

a

Performance Study Containers .

Which container set?
= AWS and Google GPU containers
= AWS and Google CPU containers
= Rocky bases for Compute Engine

magma:libfabric
mixbench:libfabric
lammps-gpu:libfabric
osu-gpu:libfabric
Iaq(hos:llbfabncgpu-zen4
nek5000:libfabric

laghos:gpu-zen4
mlnlfe:google-gfu
lammps-gpu:kokkos-reax
mt-gemm:latest
lammps-gpu:google-gpu
amg2023:spack-slim
osu-gpu:latest

mt-gemm:cpu-zen4

mixbench:cpu

single-node:cpu

laghos:cpu-zen4

minife:cpu-zen4
lammps-cpu:libfabric-zen4
mt-gemm:libfabric-cpu-zen4-9k
mixbench:libfabric-cpu
stream:libfabric-cpu-zen4
kripke-cpu:libfabric-zen4
lammps-cpu:rocky-8
quicksilver-cpu:rocky-8
kripke-cpu:rocky-8
magma:azure-hpc-gpu-ubuntu2204
amg:azure-hpc-gpu-ubuntu2204
minife:azure-hpc-gpu-ubuntu2204
osu-gpu:azure-hpc-gpu-ubuntu2204
lammps-gpu:azure-hpc-ubuntu2204
pytorch-resnet-experiment:azure-gpu
pytorch-resnet-experiment:libfabric-gpu
mt-gemm:azure-hpc-1k
lammps-cpu:azure-hpc-vanilla
quicksilver-cpu:azure-hpc
stream:azure-hpc :
amg2023:azure-hpc-cpu-int64-zen3

VVUUUSG U SXPEOERE It X STt ISXoYEm
CECEcCcamga=gecaacccanccyliloocooodar=28c
8000 00U OVLTRe V00004 V80T ONNNNNDOLELS T
COOCOCNOCN T 5© /) |, CN N NN NN NONANN N T N
e e T D A ON—= T EO T T O OO [T RN NN
o 5835850539033V aE2V0P 0222225 >55%
= 2= 0 EPn 3 acC0RAC NG L E T EEEEEESSLURNG
© SO O8Y ESQGUUcU0S L eYa53555555mlaRnE
Euaaooumgmm‘.'!5gﬁdaggaa“ﬁ.gseegnggggﬁzgc,séf
CODCOQC XM =S5 etaou=EtaYVY i VY3 C=pg o >
O¢ Nl ancl S5 E3NBEEDRECE N CeEuE 055555508 8am
Co=Y —Rou¥sos5cvos 508 Q
Ch2BXOERESO " 0 FPESCCR 525 €002 CERLO0
X 28w E S N D © £E=9 N v
EECBEREDT 2D G5 coREZEOPODEESERTRE Y
Eg = 2 ag E VOO VEYRLUOLooEGSS 2
@ 2 £ WeLELEU afo85atoidn T
& o £ « g=XEx=35 coccoc2xolo8 o
= £ =E0g 3 T T NG ae e
£ ECE0S T voova?SELE 5
g =5 EETRE ~ £5555435%83 R
= e QE @ aNNNQ.CJ_‘ €9 ®©
8, TROCDAY m
g o
Z spezifs 5
5B SEPET ¢ >

T ESE5E
SS £
E dmgk ©

e

a

Performance Study Containers .

Which container set?

= AWS and Google GPU containers
= AWS and Google CPU containers
= Rocky bases for Compute Engine
= Azure GPU

fabric
fabric
fabric

magma:libfabric

mixbenc

Fu»zen.4
nek5000:libfabric

laghos:gpu-zen4
minife:google-gpu

laghos:libfabric-g

XBIIERE ISt X ST 0@
sfoEfcodcccaaccyd
viorlooudraL o0 oS
L < <
T O HUBNE Y NNNT GNNGY
SEGY5288 33203202
CEYm32C0RRENGREED
XEolmpYicuvasoyasa
o nWIclovolaselaes
Tz oD JEx—ow“ Q.24 G0
X o5m EZolESV=EESY LY
3LaN8EESGEE 02850
SEGR"S REEZEUEAES
o 22 = V@ O=UED
=% E E -
g E® Q-é!gxﬂ-g
£ E EEESS ©
.] EE ﬁ&

©

Lo

o

i

£

kripke~cgu: rocky-8

SESTT I SN oYY
ooooon.n..-qu._g-
NN D TYET
55555p02000
A EE S S =TT 33
CCCCCRAOVDUNN
S3333g0l=Qa@m®
Qo095 53c 52
2777 7E=2R93E
33339052503
caocaagcEJLP
DOOOC.E O U
|l|All—E e
VOVLLL Eg 5=
222953 5a%
sCce2xa) 0N
TrTTND 22 9Y
VYVOYV TP IE LY
P as
S>333300 o
NNNNQc,, E
TROCDAY
3583485 5
EEEZSLD
5B SEPET ¢
© ESESE
E 8mgl

=2

a

amg2023:azure-hpc-cpu-int64-zen3 -

magma:libfabric
mixbench:libfabric
lammps-gpu:libfabric
osu-gpu:libfabric
Iaq(hos:llbfabncgpu-zen4
nek5000:libfabric

laghos:gpu-zen4

mlnlfe:google-gfu
lammps-gpu:kokkos-reax
mt-gemm:latest
lammps-gpu:google-gpu
amg2023:spack-slim
osu-gpu:latest

mt-gemm:cpu-zen4

mixbench:cpu

single-node:cpu

laghos:cpu-zen4

minife:cpu-zen4
lammps-cpu:libfabric-zen4
mt-gemm:libfabric-cpu-zen4-9k
mixbench:libfabric-cpu
stream:libfabric-cpu-zen4
kripke-cpu:libfabric-zen4
lammps-cpu:rocky-8
quicksilver-cpu:rocky-8
kripke-cpu:rocky-8
magma:azure-hpc-gpu-ubuntu2204
amg:azure-hpc-gpu-ubuntu2204
minife:azure-hpc-gpu-ubuntu2204
osu-gpu:azure-hpc-gpu-ubuntu2204
lammps-gpu:azure-hpc-ubuntu2204
pytorch-resnet-experiment:azure-gpu
pytorch-resnet-experiment:libfabric-gpu
mt-gemm:azure-hpc-1k
lammps-cpu:azure-hpc-vanilla
quicksilver-cpu:azure-hpc
stream:azure-hpc :
amg2023:azure-hpc-cpu-int64-zen3

Performance Study Containers .

Which container set?

= AWS and Google GPU containers
= AWS and Google CPU containers
= Rocky bases for Compute Engine
= Azure GPU
= Azure CPU

fabric
fabric
fabric

magma:libfabric

mixbenc

Fu»zen.4
nek5000:libfabric

laghos:gpu-zen4
minife:google-gpu

laghos:libfabric-g

XBIIERE ISt X ST 0@
sfoEfcodcccaaccyd
viorlooudraL o0 oS
L < <
T O HUBNE Y NNNT GNNGY
SEGY5288 33203202
CEYm32C0RRENGREED
XEolmpYicuvasoyasa
o nWIclovolaselaes
Tz oD JEx—ow“ Q.24 G0
X o5m EZolESV=EESY LY
3LaN8EESGEE 02850
SEGR"S REEZEUEAES
o 22 = V@ O=UED
=% E E -
g E® Q-é!gxﬂ-g
£ E EEESS ©
.] EE ﬁ&

©

Lo

o

i

£

kripke~cgu: rocky-8

SESTT I SN oYY
ooooon.n..-qu._g-
NN D TYET
55555p02000
A EE S S =TT 33
CCCCCRAOVDUNN
S3333g0l=Qa@m®
Qo095 53c 52
2777 7E=2R93E
33339052503
caocaagcEJLP
DOOOC.E O U
|l|All—E e
VOVLLL Eg 5=
222953 5a%
sCce2xa) 0N
TrTTND 22 9Y
VYVOYV TP IE LY
P as
S>333300 o
NNNNQc,, E
TROCDAY
3583485 5
EEEZSLD
5B SEPET ¢
© ESESE
E 8mgl

=2

a

amg2023:azure-hpc-cpu-int64-zen3

magma:libfabric
mixbench:libfabric
lammps-gpu:libfabric
osu-gpu:libfabric
Iaq(hos:llbfabncgpu-zen4
nek5000:libfabric

laghos:gpu-zen4

mlnlfe:google-gfu
lammps-gpu:kokkos-reax
mt-gemm:latest
lammps-gpu:google-gpu
amg2023:spack-slim
osu-gpu:latest

mt-gemm:cpu-zen4

mixbench:cpu

single-node:cpu

laghos:cpu-zen4

minife:cpu-zen4
lammps-cpu:libfabric-zen4
mt-gemm:libfabric-cpu-zen4-9k
mixbench:libfabric-cpu
stream:libfabric-cpu-zen4
kripke-cpu:libfabric-zen4
lammps-cpu:rocky-8
quicksilver-cpu:rocky-8
kripke-cpu:rocky-8
magma:azure-hpc-gpu-ubuntu2204
amg:azure-hpc-gpu-ubuntu2204
minife:azure-hpc-gpu-ubuntu2204
osu-gpu:azure-hpc-gpu-ubuntu2204
lammps-gpu:azure-hpc-ubuntu2204
pytorch-resnet-experiment:azure-gpu
pytorch-resnet-experiment:libfabric-gpu
mt-gemm:azure-hpc-1k
lammps-cpu:azure-hpc-vanilla
quicksilver-cpu:azure-hpc
stream:azure-hpc :
amg2023:azure-hpc-cpu-int64-zen3

How does container build strategy impact similarity?
Now let's take a slice of that set (from one cloud)

Build strategy influences container similarity

10
. 08
-06

-04

. o
0.0

- kripke-cpu:zend

laghos:cpu-zend
| - quicksilver-cpu:zend
lammps-cpu:zend
stream:cpu-zend
- minife:cpu-zend
Y asu-cpu:zend
amg2023:spack-slim

mt-gemm:cpu-zend

- mixbench:cpu

< - < - + - 3 + 3
z T z z z p £ P 2
& g 5 3 H] s = 5 g
¥ 8 8 i 8 5 £ y £
3 3 5 3 3 3 s 3 g
2 2 2 2 2 2 3 2 g
¢ ¥ ¥ I3 o 3 a g 3

5 & 3
£] -3 H 2 2 m £ x
3 2 E @ £ o § E
£ g E & 5 2 &

g2 a i-J o

H

g § €

Real performance study containers

SIMILARITY OF CONTAINER SETS BASED ON BUILD STRATEGY

m.]
g o L[

- ensemble-lammps:latest

ensemble-laghos:latest

- ensemble-quicksilver:latest
- ensemble-stream:latest
- ensemble-mt-gemm:latest
- ensemble-kripke:latest

- ensemble-minife:latest

- ensemble-amg2023:latest

ensemble-osu:latest

- ensemble-mixbench:latest

- - | 2 3 5 2 2 - - K
P [E g i v - 3 £
£ & 2 5 £ 4 £ § & %
= E K] & 5 £ £ S & H
& 2 e b P K @ £ £ X
3 @ B 2 € 3 2 s & £
€ 3 & E @ E £ 1 @
] E 2 3 = g F k-] 5 3
2 2 8 £ 2 2 £ £
. 5 8 o 8 g
& 2 3
5 v 5 5

Best effort of same containers

x
]
]
a
5

=

kY

5
[
]
2
2
g

ensemble-lammps:spack

- ensemble-laghos:spack

- ensemble-lammps:spack

- ensemble-minife:spack

ensemble-amg2023:spack

ensemble-stream;spack

ensemble-quicksilver:spack

ensemble-amg2023:spack
ensemble-osu:spack
ensemble-stream:spack

ensemble-minife:spack
ensemble-quicksilver:spack

Spack

Container Set Total Layers

Unique URIs Unique Containers

Unique Layer Digests

Jacaard Similarity (mean and s.d)

Performance Study 258
Best Effort for Redundancy 128
Low Redundancy Builds (spack) 56

10 10 115
10 10 33
7 ¥ 50

0.40 (0.38)
0.66 (0.128)
0.2 (0.33)

The number of unique layer pulls per strategy:

10
. 08

- 0.6

— kripke-cpu:zend

- laghos:cpu-zena

- quicksilver-cpu:zend

lammps-cpu:zend

stream:cpu-zend

minife:cpu-zend

— asu-cpu:zend

amg2023:spack-slim

mt-gemm:cpu-zend

- mixbench:cpu

osu-cpuizend
mixbench:cpu -

Kripke-cpu:zend
laghos:cpu-zend
quicksilver-cpu:zend -
mmps-cpu:zend |
stream:cpu-zend -|
minife:cpu-zend
amg2023:spack-slim
mt-gemm:cpu-zend

Real performance study containers

45% of layers are unique pulls

T

- ensemble-laghos:latest

- ensemble-lammps:latest

- ensemble-stream:latest
- ensemble-mt-gemm:latest
- ensemble-kripke:latest

- ensemble-minife:latest

- ensemble-amg2023:latest
- ensemble-osu:latest

- ensemble-mixbench:latest

ensemble-laghos:latest -
ensemble-lammps:latest -
ensemble-quicksilver:latest -
ensemble-stream:latest -
ensemble-mt-gemm:latest -
ensemble-kripke:latest -
ensemble-minife:latest -
ensemble-amg2023:latest -
ensemble-osu:latest -
ensemble-mixbench:latest

Best effort of same containers

28% of layers are unique pulls

- ensemble-quicksilver:latest

- ensemble-laghos:spack

- ensemble-lammps:spack

- ensemble-minife:spack

ensemble-amg2023:spack

ensemble-stream;spack

ensemble-quicksilver:spack

ensemble-osu:spack

x
]
]
a
5

=

kY

5
[
]
2
2
g

ensemble-lammps:spack
ensemble-minife:spack
ensemble-amg2023:spack
ensemble-stream:spack
ensemble-quicksilver:spack

Spack

89% of layers are unique pulls

The number of unique layer pulls per strategy:

10
. 08

- 0.6

— kripke-cpu:zend

- laghos:cpu-zena

- quicksilver-cpu:zend

lammps-cpu:zend

stream:cpu-zend

minife:cpu-zend

— asu-cpu:zend

amg2023:spack-slim

mt-gemm:cpu-zend

- mixbench:cpu

osu-cpuizend
mixbench:cpu -

Kripke-cpu:zend
laghos:cpu-zend
quicksilver-cpu:zend -
mmps-cpu:zend |
stream:cpu-zend -|
minife:cpu-zend
amg2023:spack-slim
mt-gemm:cpu-zend

Real performance study containers

45% of layers are unique pulls

T

- ensemble-laghos:latest

- ensemble-lammps:latest

- ensemble-stream:latest
- ensemble-mt-gemm:latest
- ensemble-kripke:latest

- ensemble-minife:latest

- ensemble-amg2023:latest
- ensemble-osu:latest

- ensemble-mixbench:latest

ensemble-laghos:latest -
ensemble-lammps:latest -
ensemble-quicksilver:latest -
ensemble-stream:latest -
ensemble-mt-gemm:latest -
ensemble-kripke:latest -
ensemble-minife:latest -
ensemble-amg2023:latest -
ensemble-osu:latest -
ensemble-mixbench:latest

Best effort of same containers

28% of layers are unique pulls

- ensemble-quicksilver:latest

- ensemble-laghos:spack

- ensemble-lammps:spack

- ensemble-minife:spack

ensemble-amg2023:spack

ensemble-stream;spack

ensemble-quicksilver:spack

ensemble-osu:spack

x
]
]
a
5

=

kY

5
[
]
2
2
g

ensemble-lammps:spack
ensemble-minife:spack
ensemble-amg2023:spack
ensemble-stream:spack
ensemble-quicksilver:spack

Spack

89% of layers are unique pulls

How does container build strategy impact similarity?
Redundancy of layers increases similarity

What about best practices?

Are people using multi-stage builds?

Dockerfile
build stage

FROM buildbase as build e Look for more than one FROM in our database
e We find 2.56% of image builds use multi-build strategy

production ready stage
FROM runbase

COPY --from=build
/artitftact

Are people using docker "official” images?

e Look at FROM directive
e 14.77% of image base are from Docker Hub

w docker:

Are people using the "latest” tags?

e This is considered a bad practice (moving target)
e We can look at the FROM directive tag
e 5.3% of images use latest

Are people using pinned image digests?

This guarantees an exact build (version)
Comes at the cost of security updates
We can look for a sha256 instead of a tag
Only 0.09 (less than 1%) found

apt-get and install in the same line?

e 507,695 layers use apt-get
e Of that set, 94.3% also have apt-get install
e Of that set, 67.8% do a clean too

apt-get and install in the same line?

-d "$rootfsDir/etc/apt/apt.conf.d"]; then

=

keep us lean by effectively running "apt-get clean" after every install

aptGetClean='"rm -f /var/cache/apt/archives/*.deb /var/cache/apt/archives/partial/*.deb /var/cache/apt/*.bin || true";'

echo >&2 "+ cat > '$rootfsDir/etc/apt/apt.conf.d/docker-clean'"
cat > "$rootfsDir/etc/apt/apt.conf.d/docker-clean" <<-EOF
Since for most Docker users, package installs happen in "docker build" steps,
they essentially become individual layers due to the way Docker handles
layering, especially using CoW filesystems. What this means for us 1is that
¢ the caches that APT keeps end up just wasting space in those layers, making
our layers unnecessarily large (especially since we'll normally never use

these caches again and will instead just "docker build" again and make a brand

new image).

What about best practices?
People often don't follow them, but best that the tooling
Implements them.

What is more important, image size or
number of layers?

Does the number of layers matter at all?

-:‘:'\’Q‘
A] ‘\‘.
(: “\“‘
. -]
; e L
R LTS N L A
AN i e g T

| built a simulation tool "container-crafter” for pulling studies

URI is the base or root to build

uri: ghcr.io/converged-computing/container-chonks-runi

Sizes are in bytes, the total size for the container
sizes:

- total: 53702097

- total: 58049507.8

- total: 71460665.0

- total: 91388866.2

- total: 108513992.4

A config file is used to build mock containers.
We control the layer count; total image size
Each layer is guaranteed to be unique

The tool will build to a specific URI

Each layer only allowed up to 10GB

- total: 132399102
- total: 163049655.
- total: 218665412.
- total: 271728773.
- total: 320018606.
- total: 392602448

- total: 496514346.

- total: 687439577.

- total: 1181249324.6

- total: 2775722493.4

- total: 6841726027.3

- total: 10907729561.2 # range between the two
- total: 14973733095.1

- total: 19039736629 # 100th

are the number of o do for each size

://github.com/moby

9
i 125

TABLE 1

IMAGE S1ZES CHOSEN FOR PULLING STUDY

Image Size (bytes)

Human readable

Percentile from Database

| built a simulation tool "container-crafter” for pulling studies

Sizes chosen at percentile increments of 5

) . . .
232)23233;’ 83:85“41\481)3) gf;ﬁ derived from the real data, with the exception of
71460665.0 (71.46 MB) 35th the 95th-100th percentile that was broken into
91388866.2 (91.39 MB) 40th ‘o
108513992 4 (108.51 MB) A5th an additional set of three ranges.
132399102.0 (132.4 MB) 50th
163049655.0 (163.05 MB) 55th
218665412.8 (218.67 MB) 60th
271728773.4 (271.73 MB) 65th
320018606.2 (320.02 MB) 70th
392602448.0 (392.60 MB) 75th
496514346.8 (496.51 MB) 80th
687439577.6 (687.44 MB) 85th
1181249324.6 (1.18 GB) 90th
2775722493 .4 (2.78 GB) 95th
6841726027.3 (6.84 GB) 96.25th
10907729561.2 (10.91 GB) 97.5th
14973733095.1 (14.97 GB) 08.75th

19039736629.0 (19.04 GB) 100th

Pull time (seconds)

What matter is total image size, not number of layers

Pull times for Test Experiments nl-standard-16

175.0 =
< © e - o %
150.0 & B E g = B8 - B
- g
125.0 o
b
100.0 Sizes between
BN 43702097
= 14MB-19GB
75.0 [19029736629
50.0
25.0

00 ©©° 0% 809 o06° o0® 09 6% o0® 6% 0% o0® o0 o0® o0® o0° oo
— ~N m < Te]] ~ [se] (9] o —
~ ~

Number of Layers

o~ m < N (=
— — — ~N n

75

The same total size split across 1-100 layers takes the same amount of time.
What explodes pulling time is just the total size of the image.
The number of layers largely doesn't matter.

Pull time (seconds)

For the study, use a value that reflects actual practice

Pull times for Test Experiments nl-standard-16

175.0 =
- 2 Y - - %
= B E - B .

150.0 - E [% o %

125.0 rg:

1560 For further study, | chose
— sizes 9 (median of the

o dataset) and max 125

50.0

25.0

00 ©©° 0% 0% o06° 0% 69 6% o0° 6% 0% o0® o0 eo® o0 o0° oo
— ~N m < Te]] ~ [se] (9] o — o~ m < '] o n
~N mn ~

~ ~ ~ ~ ~

Number of Layers

100

The same total size split across 1-100 layers takes the same amount of time.
What explodes pulling time is just the total size of the image.
The number of layers largely doesn't matter.

What is more important, image size or
number of layers?
Image size!

What is the best strategy for container pulling?

Cloud Pulling Study

e Google Kubernetes Engine (GKE)
e 16 VvCPU, 60GB RAM / node
e Node (cluster) sizes 4, 8, 32, 64, 128, and 256

Cloud Pulling Study

e Google Kubernetes Engine (GKE)
e 16 VvCPU, 60GB RAM / node
e Node (cluster) sizes 4, 8, 32, 64, 128, and 256

For each container (size and layers):
A Job will be created to pull the container
Kubernetes Event Exporter used to collect all events

n1-standard-64 was only 1.028x
faster, but 3.87x more expensive

Cloud Pulling Study

e Google Kubernetes Engine (GKE) n1-standard-64 was only 1.028x
e 16 vCPU, 60GB RAM / node faster, but 3.87x more expensive
e Node (cluster) sizes 4, 8, 32, 64, 128, and 256

For each container (size and layers):
A Job will be created to pull the container
Kubernetes Event Exporter used to collect all events

Each experiment will be conducted several times to assess a setup

Strategies for optimized container pulling in Kubernetes

Use a local (cloud provided) registry

Use a solid state drive (SSD) instead of persistent disk (HDD)
Use image streaming (SOCI Snapshotter and similar)

Use zstandard compression (greater than 3x faster than gzip)
Preload images onto nodes (using a Daemonset)?

Strategies for optimized container pulling in Kubernetes

Use a local (cloud provided) registry (pulling latency)

Use a solid state drive (SSD) instead of persistent disk (HDD) (FS latency)
Use image streaming (SOCI Snapshotter and similar)

Use zstandard compression (greater than 3x faster than gzip)

Preload images onto nodes (using a Daemonset)?

Strategies for optimized container pulling in Kubernetes

e Use a local (cloud provided) registry (pulling latency)
e Use a solid state drive (SSD) instead of persistent disk (HDD) (FS latency)
e Use image streaming (SOCI Snapshotter and similar)

1. First test with containers generated from simulation tool.
2. Then use real-world application containers.

Strategies for optimized container pulling in Kubernetes

e Use a local (cloud provided) registry (pulling latency)
e Use a solid state drive (SSD) instead of persistent disk (HDD) (FS latency)
e Use image streaming (SOCI Snapshotter and similar)

1. First test with containers generated from simulation tool.
2. Then use real-world application containers.
3. Test node coordination

What is the best strategy for container pulling?
Let's look at the results!

Does pulling from a local registry improve pull times?
No, not really

180.0 Container Pull times for Experiment with 9 Layers, ghcr.io

des

B

160.0

(o]

16
32
64
128
256

— 140.0 ghcr.io

QNN E

100.0
80.0

60.0

Pull time (seconds

40.0

20.0

é
i

0.0

1171249324
2765722493
6831726027
10897729561
14963733095
19029736629

Total Image Size (bytes)

Does pulling from a local registry improve pull times?
No, not really

180.0 Container Pull times for Experiment with 9 Layers, ghcr.io

des

B

160.0

(o]

16
32
64
128
256

— 140.0 ghcr.io

S

&

o
QNN E

100.0

80.0

60.0

Pull time (seconds

40.0

i

20.0

é
i

0.0

Pull time does not increase for
larger clusters!

1171249324
2765722493
6831726027
10897729561
14963733095
19029736629

Total Image Size (bytes)

Does pulling from a local registry improve pull times?
No, not really

Container Pull times for Experiment with 9 Layers, gcr.io

180.0
nodes
160.0 = 4
/1 8
—~ 140.0 = 16
3 mm 32
C 120.0 ©m 64
& . 128
U 100.0 =mm 256
et
q) .
g 900 gcr.io
= 600
= o 9
& 40.0 Ob@é%g‘
20.0 e@o—@ﬁ-&i
0.0 208
<t m ™~ — N (o))
o~ (o)} o O N ™
m < o Tl o O
(o)} o~ O (@) m O
< o~ ™N ™ m m
o~ r~ ™~ ~ ~ ~
i Tg} — m~ m (@)}
™~ O m (0)] O ™~
— r~ [ve) o0 (o)) o
— ™~ O o <t (o)}
- ~ —~

Total Image Size (bytes)

Does pulling from a local registry improve pull times?
No, not really

180.0 Coprited e Fud | o vessss T et nrentt wa thh @ Uanyenss, giwernioo

160.0

&
ooam

ghcr.io

=
o

140.0

o w
2N

120.0
128

256

I F

100.0

RO gcr.io

60.0

Pull time (seconds)

40.0

20.0
0.

2765722493
6831726027

o
1171249324 i

10897729561
14963733095
19029736629

Total Image Size (bytes)

Does pulling with local SSD improve pull times?
Yes! Often 1.25x

Container Pull times for Experiment with 9 Layers, ghcr.io

180.0
nodes
160.0 Emm 4
== 8
—~ 140.0 /=R 16
4 mm 32
C 120.0 mm 64
o . 128
Q 100.0 = 256 %
o ;
Q) .
E 80.0 0@%% gcrlo
* 60.0
=
Q- 40.0 Oe.g.g.gag
20.0 68 i§
0.0 a"
<t m ™~ — Te] ()]
N (@) N (o] (o)} N
m < o o) o ©O
[e)) N O (@) m (e}
< N N N m m
~ ~ ~ ~ ~ ~
~— n — ™~ m (e)]
~ © m o [te) ~N
— ~ 00 0 o o
=i ~ © o < o
i i i

Total Image Size (bytes)

Does pulling with local SSD improve pull times?
Yes! Often 1.25x

180.0 Container Pull times for Experiment with 9 Layers, gcr.io

des

-

160.0

(o2]

16
32
64
128
256

140.0

120.0

JIINNLE

100.0

80.0 gcr.io

60.0

Pull time (seconds)

40.0

H

20.0

o
o
1171249324 i

2765722493
6831726027
10897729561
14963733095
19029736629

Total Image Size (bytes)

Does pulling with image streaming improve pull times?
Impossibility, yes.

Container Pull times for Experiment with 9 Layers, ghcr.io

@ nodes gcr.io
175 o Hm 4
== 8
—~ 15.0 © B 16
S 8 e 32
= o 64
S L2e < ;8 . 128
O
f”), 10.0 o 8 : BN 256
@ 000
E 75 - oego
= SR B
S 5.0
a
2.5 g o 8 <
0o TOeEE88e cceges ecpeeld #6088 2-28e8
< m r~ — N ()]
N o o © 0 N
™ < o TS o ©
o ~N © o ™ ©
< ™N ™N N m m
~N N~ M~ r~ ~ ~
. N — ™~ m ()]
™~ O m @) O N
- ~ 00) o o
~— N O o < o
o ~ —

Total Image Size (bytes)

Does pulling with image streaming improve pull times?
Impossibility, yes.

Container Pull times for Experiment with 9 Layers, ghcr.io

@ nodes gcr.io
17.5 o Hm 4
== 8
—~ 15.0 < mm 16
S 3 mE 32
= o B 64
S L2e < ;8 . 128
o
f”), 10.0 o 8 : BN 256
) 0a®
& 715 - o© go
+ o
= 5.0
a
2.5 g o) 8 (1? ‘T

:
:
{
:
%
%

0.0

1171249324
2765722493
6831726027
14963733095
19029736629

—
O
N
()]
N
~
I~
(o))
0
o
=i

Total Image Size (bytes)

Does pulling with image streaming improve pull times?
Impossibility, yes.

Container Pull times for Experiment with 9 Layers, ghcr.io

@ nodes gcr.io
17.5 o Hm 4
== 8
—~ 15.0 o 16
S 8 . 32
= o 64
S L2e < ;8 . 128
O
f”), 10.0 . 8 : BN 256
@ 0a®
E 75 - oego
) Sl
S 5.0
a
2.5 % o 8 <
0o ToEB8e cceges ccpeed #6088 2-28e8
< m m~ — N ()]
N o o © o) N
m < = L0 o ©
oA ~N © o) ©
< ™N ™N N m m
~N N~ M~ r~ ~ ~
. N — M~ m ()]
™~ O m (o)) O ™N
— ~ 00 00 o o
— N O o < o
o ~ —

Total Image Size (bytes)

Does pulling with image streaming improve pull times?
Real application containers for AMG, LAMMPS, OSU, Minife bullt with spack

Container Pull times for Streaming vs Without Across Sizes

40.0 o experiment

% BN streaming
35.0 [0 without-streaming

L o e o e

32
64

i
Nodes

Image Streaming - why was it investigated in the first place?

"Image download accounts for 76% of container startup time, but on
average only 6.4% of the fetched data is actually needed for the container

to start doing useful work."

Harter et al FAST '16

https://www.usenix.org/node/194431

Image Streaming - why was it investigated in the first place?

Faster Container Pulling in Kubernetes
The SOCI "Seekable OCI" Snapshotter

Faster Container Pulling in Kubernetes
he SOCI "Seekable OCI" Snapshotter

Vanessa Sochat

https://youtu.be/ZXM1gP4goP8

Image Streaming - how does it work?
Step 1. We record the entrypoint to find "prioritized files”

prefetch landmark

.prefetch.landmark) Footer

prioritized files ‘ (

- gzip member

- omitted gzip member

..........

- tar header

- regular file payload

................................... - .+« footer

no-prefetch landmark _
(.no.prefetch.landmark) + + - landmark file payload

https.//github.com/containerd/stargz-snapshotter/blob/main/docs/estargz.md

Image Streaming - how does it work?
Step 1. We record the entrypoint to find "prioritized files”

prefetch landmark

.prefetch.landmark) Footer

prioritized files ‘ (

- gzip member

- omitted gzip member

..........

- tar header

- regular file payload

................................... - .+« footer

no-prefetch landmark _
(.no.prefetch.landmark) + + - landmark file payload

https.//github.com/containerd/stargz-snapshotter/blob/main/docs/estargz.md

Image Streaming - how does it work?
Step 2: Image and table of contents (artifact) pushed to registry

Image Manifest List Image Manifest Referrers Manifest List

SBOM (software bill of materials)
SOCI Index
Squirrel Snacks?

SOCI Index

ztoc artifact

Image Streaming - how does it work?
Putting it all together!

A snapshot is a view of the container filesystem, prepared from a layer

1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents

Image Streaming - how does it work?
Putting it all together!

A snapshot is a view of the container filesystem, prepared from a layer

1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents
2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files

prefetch landmark
.prefetch.landmark)

prioritized files ‘ (Footer

Image Streaming - how does it work?
Putting it all together!

A snapshot is a view of the container filesystem, prepared from a layer

1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents
2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files
3. After the prioritized files are downloaded, we mark the container as ready (and it's ready much faster)

Image Streaming - how does it work?
Putting it all together!

A snapshot is a view of the container filesystem, prepared from a layer

1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents
2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files

3. After the prioritized files are downloaded, we mark the container as ready (and it's ready much faster)

4. Additional content needed is loaded on demand using the distribution spec "resumable pull"

Resumable Pull

Company X is having more connectivity problems but this time in their deployment datacenter. When downloading a blob, the

connection is interrupted before completion. The client keeps the partial data and uses http Range requests to avoid downloading
repeated data.

https://github.com/opencontainers/distribution-spec/blob/main/spec.md

Image Streaming - how does it work?
Putting it all together!

A snapshot is a view of the container filesystem, prepared from a layer

1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents
2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files

3. After the prioritized files are downloaded, we mark the container as ready (and it's ready much faster)

4. Additional content needed is loaded on demand using the distribution spec "resumable pull"

5. From the user perspective, the container pulled a lot faster because we only actually pulled a small subset of files.

Image Streaming - how does it work?
Putting it all together!

A snapshot is a view of the container filesystem, prepared from a layer

1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents

2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files

3. After the prioritized files are downloaded, we mark the container as ready (and it's ready much faster)

4. Additional content needed is loaded on demand using the distribution spec "resumable pull"

5. From the user perspective, the container pulled a lot faster because we only actually pulled a small subset of files.

14. Range Requests

Clients often encounter interrupted data transfers as a result of canceled requests or dropped connections.
When a client has stored a partial representation, it is desirable to request the remainder of that
representation in a subsequent request rather than transfer the entire representation. Likewise, devices with
limited local storage might benefit from being able to request only a subset of a larger representation, such
as a single page of a very large document, or the dimensions of an embedded image.

Range requests are an OPTIONAL feature of HTTP, designed so that recipients not implementing this feature
(or not supporting it for the target resource) can respond as if it is a normal GET request without impacting
interoperability. Partial responses are indicated by a distinct status code to not be mistaken for full responses
by caches that might not implement the feature.

https://www.rfc-editor.org/rfc/rfc9110.html#name-range-requests

Image Streaming - how does it work?
Putting it all together!

A snapshot is a view of the container filesystem, prepared from a layer

1. We start with a registry that supports artifacts, and has a pushed image and associated table of contents
2. The snapshotter plugin knows how to use that table of contents to download just the prioritized files

3. After the prioritized files are downloaded, we mark the container as ready (and it's ready much faster)

4. Additional content needed is loaded on demand using the distribution spec "resumable pull"

5. From the user perspective, the container pulled a lot faster because we only actually pulled a small subset of files.

Since files needed later in execution are pulled on demand, we have to be cautious
about using that plugin for apps that require loading large data later in execution!

What is the best strategy for container pulling?
SSD is a good idea always, image streaming sometimes

Node Coordination

Does node coordination lead to slower pull times?
Are we limited by the slowest node?

Pull times didn't increase but...
Overall experiment time increased with cluster size

Total Experiment Time as a Function of Size

—— container pulling study: the overhead of scale /

2800 - //
2600 - /
2400 ¥

w

e

c

S 2200 /

3

2 2000 v

=

1800 ,/
1600 /

1400 //

0 50 100 150 200 250
Nodes

Does node coordination lead to slower pull times?
Are we limited by the slowest node?

Event times are not coordinated (understandably) across nodes...
but it means we are limited by the slowest node

Time Differences Between Event "Pulled" Across Nodes

9 50.0 image-size
c
S 40.0 1176249324 bytes
& . = 2770722493 bytes
= 30.0 ~—— 6836726027 bytes
£ 50.0 / —— 10902729561 bytes
g ~—— 14968733095 bytes
2 10.0 ~— 19034736629 bytes
©
- 0.0
o o o o o o
L0 o 1N o L0
i i ™N ™N

Number of Nodes

Node Coordination
Nodes are less coordinated as nodes increase, we need to
better understand why.

LELCEVEVS

What did we learn from this work?

e A container building strategy optimized for similarity in container layers, and a pulling strategy
(filesystem or algorithm) to decrease pull time can decrease total cost for a study.

This improvement becomes more salient when using expensive resources such as GPU, or an
auto-scaling strategy that provisions new nodes that don't have images cached.

Let's calculate cost with respect to unique layers

Assuming:
- We have 10 total applications (what we had for our performance study)
- Each image has mean layer size (~12MB), and mean layers (16) (means from dataset of 77K Dockerfiles)

Let's calculate cost with respect to unique layers

Assuming:
- We have 10 total applications (what we had for our performance study)
- Each image has mean layer size (~12MB), and mean layers (16) (means from dataset of 77K Dockerfiles)

Strategy: look at extremes

- In an ideal case, the first image pull (across nodes) pulls all layers (and they are cached)
- In the worst case, no layer redundancy means 16 new layers each time

Let's calculate cost with respect to unique layers

Assuming:
- We have 10 total applications (what we had for our performance study)
- Each image has mean layer size (~12MB), and mean layers (16) (means from dataset of 77K Dockerfiles)

Strategy: look at extremes

- In an ideal case, the first image pull (across nodes) pulls all layers (and they are cached)
- In the worst case, no layer redundancy means 16 new layers each time

How many layer pulls?

- In the best (hypothetical) case of all the same layers we would pull only the equivalent of 1 container, 16 layers
- This is not a realistic case because you can't have different apps with the exact same layers!
- In the worst case of all different layers, we would pull 10 x 16 == 160 layers

Let's calculate cost with respect to unique layers

Assuming:
- We have 10 total applications (what we had for our performance study)
- Each image has mean layer size (~12MB), and mean layers (16) (means from dataset of 77K Dockerfiles)

Strategy: look at extremes

- In an ideal case, the first image pull (across nodes) pulls all layers (and they are cached)
- In the worst case, no layer redundancy means 16 new layers each time

How many layer pulls?

- In the best (hypothetical) case of all the same layers we would pull only the equivalent of 1 container, 16 layers
- This is not a realistic case because you can't have different apps with the exact same layers!
- In the worst case of all different layers, we would pull 10 x 16 == 160 layers

Sizes:

- In the best case, mean layer size 12MB x 16 == 192 MB
- In the worst case, 12MB x 160 == 1920 MB

Let's calculate cost with respect to unique layers

Assuming:
- We have 10 total applications (what we had for our performance study)
- Each image has mean layer size (~12MB), and mean layers (16) (means from dataset of 77K Dockerfiles)

Strategy: look at extremes

- In an ideal case, the first image pull (across nodes) pulls all layers (and they are cached)
- In the worst case, no layer redundancy means 16 new layers each time

How many layer pulls?

- In the best (hypothetical) case of all the same layers we would pull only the equivalent of 1 container, 16 layers
- This is not a realistic case because you can't have different apps with the exact same layers!

- In the worst case of all different layers, we would pull 10 x 16 == 160 layers

Sizes:
- In the best case, mean layer size 12MB x 16 == 192 MB
- In the worst case, 12MB x 160 == 1920 MB

Pull times (assuming 3-5MB per second)

- In the best case, 192 MB will take: 39-64 seconds

- In the worst case, 1920 MB will take: 384-640 seconds (6.4 - 11 minutes)
- Differences 345-576 seconds (5.75-9.6 minutes)

Let's calculate cost with respect to unique layers

Assuming:
- We have 10 total applications (what we had for our performance study)
- Each image has mean layer size (~12MB), and mean layers (16) (means from dataset of 77K Dockerfiles)

Strategy: look at extremes

- In an ideal case, the first image pull (across nodes) pulls all layers (and they are cached)
- In the worst case, no layer redundancy means 16 new layers each time

How many layer pulls?

- In the best (hypothetical) case of all the same layers we would pull only the equivalent of 1 container, 16 layers
- This is not a realistic case because you can't have different apps with the exact same layers!

- In the worst case of all different layers, we would pull 10 x 16 == 160 layers

Sizes: For this hypothetical scenario, we estimate
- In the best case, mean layer size 12MB x 16 == 192 MB ?m: 2 ;09560332:%;23[&‘; r\‘/sgzﬂr]uerr‘r;mg
- In the worst case, 12MB x 160 == 1920 MB '

amount of time is significant depends on
the size of the cluster, the cost of the

Pull times (assuming 3-5MB per second) nodes, and the budget. E.g., the
- In the best case, 192 MB will take: 39-64 seconds p5.48xlarge node at AWS is $98.32/hqur.
- In the worst case, 1920 MB will take: 384-640 seconds (6.4 - 11 minutes) For a size 32 cluster (~$3146/hour), it

- Differences 345-576 seconds (5.75-9.6 minutes) would be an additional appox $301 - $503.

What about with a ML oriented image?

Assuming:

- 10 images like pytorch/pytorch (with nothing else)
- Layers include:

30MB
7.3MB
3.6GB (3622 MB)

What about with a ML oriented image?

Assuming:

- 10 images like pytorch/pytorch (with nothing else)
- Layers include:

30MB
7.3MB
3.6GB (3622 MB)

Sizes:

- In the best case, we pull 3 layers == 3659.3 MB
- In the worst case, 3659.3 3 layers x 10 == 36593 MB (36.593 GB)

What about with a ML oriented image?

Assuming:

- 10 images like pytorch/pytorch (with nothing else)
- Layers include:

30MB
7.3MB
3.6GB (3622 MB)

Sizes:

- In the best case, we pull 3 layers == 3659.3 MB
- In the worst case, 3659.3 3 layers x 10 == 36593 MB (36.593 GB)

Pull times (assuming 3-5MB per second)

- In the best case, 192 MB will take: 732-1219 seconds (12-20 minutes)
- In the worst case, pulling takes: 7318-12198 seconds (122-203 minutes)
- Differences 6586-10979 seconds (110-183 minutes)

What about with a ML oriented image?

Assuming:

- 10 images like pytorch/pytorch (with nothing else)
- Layers include:

30MB
7.3MB
3.6GB (3622 MB)

Sizes:

- In the best case, we pull 3 layers == 3659.3 MB
- In the worst case, 3659.3 3 layers x 10 == 36593 MB (36.593 GB)

Pull times (assuming 3-5MB per second)

- In the best case, 192 MB will take: 732-1219 seconds (12-20 minutes)
- In the worst case, pulling takes: 7318-12198 seconds (122-203 minutes)
- Differences 6586-10979 seconds (110-183 minutes)

For this hypothetical scenario with ML
images, we estimate 110-183 minutes
more of node running time to account for
pulling. Given the p5.48xlarge node at
$98.32/hour (on demand) for a size 32
cluster (~$3146/hour), it would be an
additional appox $5768 - $9595.3.

Some Additional Strategies

What else can we do in these cases?
Other strategies for caching image layers...

e Use something like AWS Parallel Cluster where you can pre-pull to a head node with a shared
volume, and the workers then create and bind to it.

e If you are auto-scaling, use a setup that mounts a read only volume with containers that are
pre-pulled.

e Use a pull-through cache that provides a local registry cache alongside your cluster.

e Forinnovation, we can explore other algorithms for predicting content to pull, compression
algorithms, and improved file-system latency.

What did we learn from this work?
It is our responsibility to be aware of cost savings

e A container building strategy optimized for similarity in container layers can increase layer
redundancy, decreasing time needed to pull and thus decreasing total time and cost for a study.

e Extra time is accumulated as clusters get larger, a result that could be due to decreases in node
coordination and needing to wait for the slowest node to finish pulling. This finding is interesting
and warrants further exploration for behavior and solutions.

What did we learn from this work?
It is our responsibility to be aware of cost savings

e A container building strategy optimized for similarity in container layers can increase layer
redundancy, decreasing time needed to pull and thus decreasing total time and cost for a study.

e Extra time is accumulated as clusters get larger, a result that could be due to decreases in node
coordination and needing to wait for the slowest node to finish pulling. This finding is interesting
and warrants further exploration for behavior and solutions.

e Container streaming is an ideal strategy for quickly starting containers that are large, but caution
should be used if large amounts of new data are needed for application execution later in the
run than is recorded by the snapshotter tool.

Interesting Findings

The Genghis Khan of container layers!
The outlier in the layer set - a digest that appeared 67,897 times!

e An empty set of 32 bytes associated with a WORKDIR directive

The Genghis Khan of container layers!
The outlier in the layer set - a digest that appeared 67,897 times!

e An empty set of 32 bytes associated with a WORKDIR directive
e But... only for cases when the directory already existed.

The Genghis Khan of container layers!
The outlier in the layer set - a digest that appeared 67,897 times!

e An empty set of 32 bytes associated with a WORKDIR directive

But... only for cases when the directory already existed.

e Turns out... there is an "empty layer" flag in the image config. If
a tool decides not to set that flag for some reason, the tool needs
to ship a valid tar+gzip, so even without any files being
packaged, this takes up space in the tar and gzip headers.

The Genghis Khan of container layers!
The outlier in the layer set - a digest that appeared 67,897 times!

e An empty set of 32 bytes associated with a WORKDIR directive

e But... only for cases when the directory already existed.

e Turns out... there is an "empty layer" flag in the image config. If
a tool decides not to set that flag for some reason, the tool needs
to ship a valid tar+gzip, so even without any files being
packaged, this takes up space in the tar and gzip headers.

This was implemented before it was discovered that /dev/null is a
valid empty file.

emptyGZLayer = digest.Digest("sha256:4f4fb700ef54461cfa02571ae@db9aldcle@cdb5577484a6d75e68dc38e8accl”

emptyDigest = digest.Digest("")

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

e | started with an understanding that the limit is 127 layers

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

e | started with an understanding that the limit is 127 layers
e In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

e | started with an understanding that the limit is 127 layers

e In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
e But containerd doesn't set a maximum...

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

e | started with an understanding that the limit is 127 layers

e In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
e But containerd doesn't set a maximum...

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

e | started with an understanding that the limit is 127 layers

e In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
e But containerd doesn't set a maximum...

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

e The limit was originally enforced because of a limit with mounting layers
o Specifically the length of an argument to a syscall that led to technical maximums

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

e | started with an understanding that the limit is 127 layers

e In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
e But containerd doesn't set a maximum...

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

e The limit was originally enforced because of a limit with mounting layers

o Specifically the length of an argument to a syscall that led to technical maximums
e But this depends on the operator system, kernel version, and container runtime!

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

e | started with an understanding that the limit is 127 layers

e In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
e But containerd doesn't set a maximum...

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

e The limit was originally enforced because of a limit with mounting layers
o Specifically the length of an argument to a syscall that led to technical maximums
e But this depends on the operator system, kernel version, and container runtime!

e containerd and buildkit use a practical approach that doesn't validate (and allows the error to propagate)

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

e | started with an understanding that the limit is 127 layers

e In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
e But containerd doesn't set a maximum...

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

e The limit was originally enforced because of a limit with mounting layers
o Specifically the length of an argument to a syscall that led to technical maximums
e But this depends on the operator system, kernel version, and container runtime!

e containerd and buildkit use a practical approach that doesn't validate (and allows the error to propagate)
e docker hard codes manual checks so you don't get to that point

How many layers are we allowed to build?
"Common" wisdom is often wrong (or outdated)

| started with an understanding that the limit is 127 layers

In Docker source code, you'll find references for each of 125 and 128 depending on overlay driver
But containerd doesn't set a maximum...

We built and pushed (successfully) docker.io/tianon/test:many-layers-256 with 256 layers, no problem!

The limit was originally enforced because of a limit with mounting layers
o Specifically the length of an argument to a syscall that led to technical maximums
But this depends on the operator system, kernel version, and container runtime!
containerd and buildkit use a practical approach that doesn't validate (and allows the error to propogate)
docker hard codes manual checks so you don't get to that point
docker will fail on this mount step after pulling the layers...

AGAIN, THIS IS INFORMATION
YOU COULD HAVE TOLD ME

BEFORE PULLING!

Let's make a SOCI snapshotter daemonset!
This is much easier to install!

kubectl apply -f soci-installer.yaml

This logic can be extended:

e To support other authentication schemes
e Other clouds (that don't have flags already)

Thank you!

sochatl@llnl.gov

B Lawrence Livermore
National Laboratory

B Lawrence Livermore
National Laboratory

Disclaimer

This document was prepared as an account of work sponsored by an agency of the United States
government. Neither the United States government nor Lawrence Livermore National Security, LLC,
nor any of their employees makes any warranty, expressed or implied, or assumes any legal liability
or responsibility for the accuracy, completeness, or usefulness of any information, apparatus,
product, or process disclosed, or represents that its use would not infringe privately owned rights.
Reference herein to any specific commercial product, process, or service by trade name, trademark,
manufacturer, or otherwise does not necessarily constitute or imply its endorsement,
recommendation, or favoring by the United States government or Lawrence Livermore National
Security, LLC. The views and opinions of authors expressed herein do not necessarily state or reflect
those of the United States government or Lawrence Livermore National Security, LLC, and shall not
be used for advertising or product endorsement purposes.

