
LLM-based Distributed Code Generation and Cost-Efficient

Execution in the Cloud

K. Rao, G. Coviello, G. Mellone, C. G. De Vita, S. Chakradhar

Kunal Rao

Researcher

NEC Laboratories America, Inc

kunal@nec-labs.com

Cloud Computing 2025

Valencia, Spain

2

• Work as Researcher at NEC Laboratories America, Inc.
in Princeton, NJ

• Current research: Generative AI, Edge and Cloud
computing, leveraging AI/ML models to solve systems
problems, gaining utility from AI/ML models for real-
world applications

• Past research: High Performance Computing, GPGPU
and Xeon Phi computing, Graph analytics, Video
Analytics (Computer Vision, Applied Machine Learning)

• 27 granted patents and several are published and
pending, 28 published papers

Brief bio

3

DiCE and DiCE-M system

DiCE: https://ieeexplore.ieee.org/document/10795392/

PICOM 2024

DiCE-M: https://ieeexplore.ieee.org/document/10818183

SEC 2024

GQA dataset Real-world marine application
(runs on edge and cloud)

https://ieeexplore.ieee.org/document/10795392/
https://ieeexplore.ieee.org/document/10818183

4

Example Serial code (for DiCE and DiCE-M)

DiCE and DiCE-M depend on ViperGPT and don’t address cost implications

5

Example Distributed code for DiCE-M

6

Example application for DiCE-C

LLM can be leveraged to generate code on-the-fly to respond to user queries

Real-world insurance application (claims processing)

7

DiCE-C System overview

DiCE-C is independent of ViperGPT and addresses cost implications

8

Query: In the accident scene, report the color and model of all the cars involved in the accident and
check if the cars are damaged or overturned.

DiCE-C application code (1/3)

Initial Serial Code:

9

DiCE-C application code (2/3)

Sample function documentation and other details

10

DiCE-C application code (3/3)
Final Distributed Code

11

Runtime for Distributed code execution

12

Baseline vs DiCE-C execution (1/2)

In baseline, entire pipeline runs on a single machine, while it is distributed in DiCE-C

13

Baseline vs DiCE-C execution (2/2)
Baseline

DiCE-C

14

• Identical Hardware: Both the baseline and DiCE-C used A100 GPU nodes ($2.2/hour)

• Different Hardware: The baseline used A100 GPUs, while DiCE-C utilized a
combination of A6000 and A4000 GPUs ($1.3/hour combined)

Experimental Setup

• We generated 30 accident scene
images using GPT-4o

• Then, we replicated the final
distributed code and created a
batch of 1000 tasks, and randomly
assigned the 30 images to these
tasks Experiments were run on Hyperstack cloud

15

Results (1/2)
Identical Hardware

Different Hardware

DiCE-C reduces costs by up to 72% for different hardware and by 32% for identical hardware

16

Results (2/2)

Execution pattern
(first 50 tasks)

CPU Load GPU Load

Execution occurs concurrently using DiCE-C and hardware utilization is high

17

Prototype system

18

• Introduced DiCE-C, a cost-efficient system for deploying vision applications in cloud
environments

• DiCE-C programmatically generates distributed code by leveraging runtime-exposed
tool documentation

• DiCE-C reduces GPU idle time and supports the use of smaller, cost-efficient GPUs by
dynamically managing API calls as independent services on Kubernetes

• Experimental evaluations on a real-world insurance application demonstrated that
DiCE-C achieves an average cost reduction of 32% on identical GPU hardware and up
to 72% when using smaller GPUs

Summary

19

	Slide 1: LLM-based Distributed Code Generation and Cost-Efficient Execution in the Cloud
	Slide 2: Brief bio
	Slide 3: DiCE and DiCE-M system
	Slide 4: Example Serial code (for DiCE and DiCE-M)
	Slide 5: Example Distributed code for DiCE-M
	Slide 6: Example application for DiCE-C
	Slide 7: DiCE-C System overview
	Slide 8: DiCE-C application code (1/3)
	Slide 9: DiCE-C application code (2/3)
	Slide 10: DiCE-C application code (3/3)
	Slide 11: Runtime for Distributed code execution
	Slide 12: Baseline vs DiCE-C execution (1/2)
	Slide 13: Baseline vs DiCE-C execution (2/2)
	Slide 14: Experimental Setup
	Slide 15: Results (1/2)
	Slide 16: Results (2/2)
	Slide 17: Prototype system
	Slide 18: Summary
	Slide 19
	Slide 20

