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• Work as Researcher at NEC Laboratories America, Inc. 
in Princeton, NJ

• Current research: Generative AI, Edge and Cloud 
computing, leveraging AI/ML models to solve systems 
problems, gaining utility from AI/ML models for real-
world applications

• Past research: High Performance Computing, GPGPU 
and Xeon Phi computing, Graph analytics, Video 
Analytics (Computer Vision, Applied Machine Learning)

• 27 granted patents and several are published and 
pending, 28 published papers

Brief bio
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DiCE and DiCE-M system

DiCE: https://ieeexplore.ieee.org/document/10795392/

PICOM 2024

DiCE-M: https://ieeexplore.ieee.org/document/10818183

SEC 2024

GQA dataset Real-world marine application
(runs on edge and cloud)

https://ieeexplore.ieee.org/document/10795392/
https://ieeexplore.ieee.org/document/10818183
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Example Serial code (for DiCE and DiCE-M)

DiCE and DiCE-M depend on ViperGPT and don’t address cost implications
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Example Distributed code for DiCE-M
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Example application for DiCE-C

LLM can be leveraged to generate code on-the-fly to respond to user queries

Real-world insurance application (claims processing)
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DiCE-C System overview

DiCE-C is independent of ViperGPT and addresses cost implications
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Query: In the accident scene, report the color and model of all the cars involved in the accident and 
check if the cars are damaged or overturned.

DiCE-C application code (1/3)

Initial Serial Code:
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DiCE-C application code (2/3)

Sample function documentation and other details
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DiCE-C application code (3/3)
Final Distributed Code
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Runtime for Distributed code execution
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Baseline vs DiCE-C execution (1/2)

In baseline, entire pipeline runs on a single machine, while it is distributed in DiCE-C



13

Baseline vs DiCE-C execution (2/2)
Baseline

DiCE-C
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• Identical Hardware: Both the baseline and DiCE-C used A100 GPU nodes ($2.2/hour)

• Different Hardware: The baseline used A100 GPUs, while DiCE-C utilized a 
combination of A6000 and A4000 GPUs ($1.3/hour combined)

Experimental Setup

• We generated 30 accident scene 
images using GPT-4o

• Then, we replicated the final 
distributed code and created a 
batch of 1000 tasks, and randomly 
assigned the 30 images to these 
tasks Experiments were run on Hyperstack cloud
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Results (1/2)
Identical Hardware

Different Hardware

DiCE-C reduces costs by up to 72% for different hardware and by 32% for identical hardware
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Results (2/2)

Execution pattern
(first 50 tasks)

CPU Load GPU Load

Execution occurs concurrently using DiCE-C and hardware utilization is high
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Prototype system
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• Introduced DiCE-C, a cost-efficient system for deploying vision applications in cloud 
environments

• DiCE-C programmatically generates distributed code by leveraging runtime-exposed 
tool documentation

• DiCE-C reduces GPU idle time and supports the use of smaller, cost-efficient GPUs by 
dynamically managing API calls as independent services on Kubernetes

• Experimental evaluations on a real-world insurance application demonstrated that 
DiCE-C achieves an average cost reduction of 32% on identical GPU hardware and up 
to 72% when using smaller GPUs

Summary
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