A Cloud Computing 2025 \Orchestrating a brighter world NEC
AR Valencia, Spain

LLM-based Distributed Code Generation and
Execution in the Cloud

K. Rao, G. Coviello, G. Mellone, C. G. De Vita, S. Chakradhar

Kunal Rao

Researcher

NEC Laboratories America, Inc
kunal@nec-labs.com

Brief bio

* Work as Researcher at NEC Laboratories America, Inc.
in Princeton, NJ

* Current research: Generative Al, Edge and Cloud
computing, leveraging AI/ML models to solve systems
problems, gaining utility from Al/ML models for real-
world applications

* Pastresearch: High Performance Computing, GPGPU
and Xeon Phi computing, Graph analytics, Video
Analytics (Computer Vision, Applied Machine Learning)

» 27 granted patents and several are published and

pending, 28 published papers
2 1I'..'Ellr'n:hl:r.trilnl:irlg::lt:lri|;;|l'l1:va.-r'-m::u'l.tl NEC

DICE and DICE-M system

GQA dataset

Prior work i

;X‘
o9
Synthesized visual
User query Tools like program

(Natural language) ViperGPT/VisReP (serial code) Single
machine

Our work

S —
A
f
[

DiCE - Synthia Distributed DiCE - Hermod Cluster of
(LLM-based Tool) (runtime) machines

Real-world marine application
(runs on edge and cloud)

User query LLM-based tool

(Natural language) (ViperGPT) Serial code

.\ Runs on cluster of
j} distributed GPUs on
edge + cloud

DiCE-M: Synthia Distributed DiCE-M: Hermod
(LLM-based Tool) (runtime)

Orchestrating a brighter world N E‘

https://ieeexplore.ieee.org/document/10795392/
https://ieeexplore.ieee.org/document/10818183

Example Serial code (for DiCE and DICE-M)

Query: How many muffins can each kid have for it to be fair? _ execute_command (image):
image_patch = ImagePatch(image)
Generated Code litter_patches = image_patch.find("litter")

def execute_command(image): if not litter_patches:
image_patch = ImagePatch(image) return "No litter found in the image."
muffin_patches = image_patch.find("muffin")
kid_patches = image_patch.find("kid")
return str(len(muffin_patches) // len(kid_patches))

E ' PR
L

closest_litter_patch = min(litter_patches,
key=lambda patch: patch.compute_depth())
closest_depth = closest_litter_patch.compute_depth()

- s 5 Yy i ot J_ T 1 T

if closest_depth < 5:

object_name =
closest_litter_patch.simple_query("What is
this?")

material =
closest_litter_patch.simple_query("What
material is this made of?")

return f"0Object: {object_name}, Material:
{material}, Depth: {closest_depth} meters"”

gelse:
return "No litter found within five meters of
depth.”

DIiCE and DICE-M depend on ViperGPT and don’t address cost implications
\Orchestrating a brighter world [NJIEQC

Example Distributed code for DICE-M

import asyncio
import hermod

async def image_patch_find(image_patch: ImagePatch,

object_name: str) -> list[ImagePatch]:

if object_name == '
object_name = 'p

result = await hermod.call ("y
image=image_patch.image)

patches = []

for obj in result[’ob] s"]:

p = image_patch.crop(obj[’'x"], obj['y
obj['x"] + obj["width"], obj['vy"]
obj[’height’])

p.object_name = obj[’c

p.ocbject_score = obj[’

patches.append (p)

return patches

| async def image_patch_simple_query (image_patch:
ImagePatch, gquestion: str) -> str:
result = await hermod.call ("bli
image=image_patch.image, query=f"Answer
briefly. {question}")
return result [’ output’]

w| async def execute_command (image) :
image_patch = ImagePatch (image)
litter patches = await
image_patch_find (image_patch, "litter™)

if not litter_patches:
return "No 11

Fi S litter
depths [patch.compute_depth() for patch in
litter_patches]
closest_litter_patch =
litter_patches[depths.index (min (depths))]
closest_depth = min(depths)

if closest_depth < 5:

object_name_task =
closest_litter_patch,

material_task = image_patch_simple_query (
closest_litter_patch, "What material

this mad 2

object_name, material = await
asyncio.gather (object_name_task,
material_task)

return £"0Ob [

return

\Orchestrating a brighter world N E‘

Example application for DICE-C

Real-world insurance application (claims processing)

GPU machines User query:
LLM-based In the accident scene, report the color and
model of all the cars involved in the accident

automatic code and check if the cars are damaged or
generation and overturned.

deployment R :
On-the-fly code c:ﬁ::fze

. Car 1: Color: black. Model: audi a4.

generatlon and Damaged: yes. Overturned: no.

execution Car 2: Color: white. Model: nissan
qashq. Damaged: yes. Overturned:
yes.
Car 3: Color: white. Model: nissan
juke,. Damaged: no. Overturned:
yes.

Operator in control room
Traffic scene (issues on-demand query)

LLM can be leveraged to generate code on-the-fly to respond to user queries
""..Dr'chestrating a brighter world N Ec

DICE-C System overview

Query

“In the accident scene, report the
color and model of all the cars
involved in the accident and check if
the cars are damaged or overturned.”

Distributed

code
) e NN

Prompt including tools Distributed Code execution
documentation Runtime
API Implementation

Response: <. Reponl;

Car 1: Color: black. Model: audi a4. Damaged: yes. Overturned: no.
Car 2: Color: white. Model: nissan gashg. Damaged: yes. Overturned: yes.
Car 3: Color: white. Model: nissan juke,. Damaged: no. Overturned: yes.

DIiCE-C is independent of ViperGPT and addresses cost implications
\Orchestrating a brighter world [NJIEQC

DICE-C application code (1/3

Query: In the accident scene, report the color and model of all the cars involved in the accident and
check if the cars are damaged or overturned.

Initial Serial Code:

¥ Query for the color of the i

car_color = await hermod.call ("blip",
image=car_patch, question="What is the color of
the car?")

import asyncio
import hermod

from PIL import Image) ;7 for the el of the \ T

car_model = await hermod.call("blip",
image=car_patch, question="What is the model of
the car?")

if the car is dan >d

car_damaged = await hermod.call ("xvlm",
image=car_patch, object_name="car",
property="damaged")

Ct if the car is o

car_overturned = await hermod.call ("xvlm",
image=car_patch, object_name="car",
property="overturned")

async def execute_query (image_filename) :
image = Image.open (image_filename)

ting in the image
cars = await hermod.call ("glip", image=image,
object_name="car")

if not cars:
print ("No cars detected in the image.")
return #)ile the informe 1
car_info = f"Car {i+l}: Color -
{car_color.get ("answer’, ’Unknown’)}, " \
f"Model -
{car_model.get (" answer’, ‘Unknown’)}, " \
f"Damaged -
{car_damaged.get (‘' result’, False)}, " \
f"Overturned -
{car_overturned.get (' result’, False)}"

for i, car in enumerate (cars):
C he > to tl ng box of

car_patch image.crop((car["x"], car["v"],
x"]

car[" +

car["width"],
car["y"] + print (car_info)
car["height"]))

image_filename = "accident_scene. jpg"
asyncio.run (execute_qgquery (image_filename))

“\Orchestrating a brighter world N E‘

DICE-C application code (2/3)

S kubectl get functions glip —-o yaml
apiVersion: hermod.nec-labs.com/vl
kind: Function

metadata:

status:
documentation:

bounding boxes.
parametersSchema: ' {"properties": {"image": {"format": "binary", "python_ type":

"PIL.Image.Image", "title": "Image", "type": "string"}, "object_name": {"title":
"Object Name", "type": "string"}}, "required": ["image", "object_name"], "title":
"Parameters", "type": "object"}’

resultSchema: ' {"$Sdefs": {"BoundingBox": {"properties": {"x": {"title": "X", "type":
"integer"}, "y": {"title": "Y", "type": "integer"}, "width": {"title"™: "Width",
"type": "integer"}, "height": {"title": "Height", "type": "integer"}}, "required":
["x", "y", "width", "height"], "title": "BoundingBox", "type": "object"}}, "properties":
{"result": {"items": {"Sref": "#/Sdefs/BoundingBox"}, "title": "Result", "type":
"array"}}, "required": ["result"], "title": "Result", "type": "object"}’

Finds the locations of object_name in the image. Returns a list of

Sample function documentation and other details
""-.Drchestrating a brighter world N Ec

DICE-C application code (3/3

Final Distributed Code

import asyncio
import hermod
from PIL import Image

async def get_car_details(car_patch, index):
try:

tasks = [
hermod.call ("blip", image=car_patch, question="What is the color of the car?"),
hermod.call ("blip", image=car_patch, question="What is the model of the car?"),
hermod.call ("xvlm", image=car_patch, object_name="car", property="damaged"),
hermod.call ("xvlim", image=car_patch, object_name="car", property="cverturned")

]

Execute all tasks for the car patch in parallel
car_color, car_model, car_damaged, car_overturned = await asyncio.gather (xtasks)

Compile the information

car_info = f"Car {index + 1}: Color - {car_color.get ("answer’, "Unknown’)}, "™ \
f"Model - {car_model.get ('answer’, ’Unknown’)}, " \
f"Damaged - {car_damaged.get (' result’, False)}, " \
f"Overturned - {car_overturned.get ('result’, False)}"

return car_info
except Exception as e:
return f"Car {index + 1}: Error occurred - {str(e)}"

async def execute_guery (image_filename) :
try:
image = Image.open (image_filename)

Detecting cars in the image
cars = await hermod.call ("glip", image=image, object_name="car")

if not cars:
print ("No cars detected in the image.")
return

car_tasks = []
for i, car in enumerate (cars):
Crop the image to the bounding box of each detected car
car_patch = image.crop((car["x"], car["y"],
car["x"] + car["width"],
car["y"] 4+ car["height"]))

Collect car detail tasks
car_tasks.append(get_car_details(car_patch, 1i))

Run all car detail tasks in parallel
car_info_list = await asyncio.gather (xcar_tasks)

for car_info in car_info_list:
print (car_info)
except Exception as e:
print (f"Failed to execute query on the image: {str(e)}l")

image_filename = "accident_scene. jpg"
asyncio.run (execute_query(image_filename))

\Orchestrating a brighter warld N Ec

Runtime for Distributed code execution

Service-based

API| execution Distributed
code

Runtime

FIFO
queue

Distributed
code

11

[

Distributed
code

FIFO
lqueue

\Orchestrating a brighter world N E‘

Baseline vs DICE-C execution (1/2)

Distributed

Monolithic Code
Code (parallel execution)

(serial execution) | ,
| Runtime |

Kubernetes
Il !

Sooaa D oo
L=

4 Aaa
I' " 'I’ " ‘3__‘:,__
M= lllll' o=

Baseline DiCE-C

In baseline, entire pipeline runs on a single machine, while it is distributed in DIiCE-C
12 "'..Drchestratingabrlghter wiorld NEC

Baseline vs DICE-C execution (2/2)

13

Baseline

GLIP BLIP BLIP XVLM AN
Detect car Identify color Identify model Check damage svRrtmed

Response
DICE-C

GLIP

Detect car

BLIP I BLIP I XVLM I XVLM

: . Check
Identify color Identify model Check damage overturned

Response

\Orchestrating a brighter world N E‘

Experimental Setup

* |dentical Hardware: Both the baseline and DiCE-C used A100 GPU nodes ($2.2/hour)

 Different Hardware: The baseline used A100 GPUs, while DiCE-C utilized a
combination of A6000 and A4000 GPUs ($1.3/hour combined)

* We generated 30 accident scene
images using GPT-40

* Then, we replicated the final
distributed code and created a

O RN e
B s eI\

batch of 1000 tasks, and randomly () Beeme; 1 (b) Scene 2. (c) Scene 3.
assigned the 30 images to these
tasks

14 \Orchestrating a brighter world N Ec

Results (1/2)

I[dentical Hardware

Nodes Cost per Total Execution Total Cost Cost
T it 050) | Time iowtety | ©5D) | Reducton 50
| Baseline [DICEC | Baseline | DICE-C | Baseline [DICEC | _

6 [50220 [S0220 | % | 18 | $572 | $39% | 308% |
8 50293 [50293 | 17 | 12 | 5499 | $352 | 294% |

Different Hardware

Nodes Cost per Total Execution Total Cost Cost
- minute (USD) Time (minutes) (USD)
[Baseline [DICEC | Baseline | DICEC | Baseline | DICEC |
1 [50037 | 50022 | 141 | 68 | $517 | S147 | 715%
7
§ 3

$0.147 | $0.087
8 | 50293 [SO0UB3 | 17 | 8 | §499 | $139 | 7224

DiIiCE-C reduces costs by up to 72% for different hardware and by 32% for identical hardware
15 “\Orchestrating a brighter world NEC

Results (2/2)

GPU Load (%)

S
o
®
o
i |
=
o
(9]

" ; 4000
Execution time Time (s)

Execution pattern CPU Load GPU Load
(first 50 tasks)

Execution occurs concurrently using DICE-C and hardware utilization is high
"\.Drchestrating a brighter world N Ec

16

Prototype system

17

3
DiCE: Distributed Code generation and Execution

Query

Query Output

Report and of :=— Damaged
car
in accident. Check if 1 silver SRS

carsjElfs or 1 green Fiat panda
1 white Volkswagen Up
Generated distributed code I - _

> =
=

Distributed execution runtime

Input images
.

is_damaged() is_overturned()
XVLM XVLM

| }

!

format_response()
RESPONSE

Operating Cost

Small Al models, $863.329

small/cheap GPUs

1/10 of OpenAl API

OpenAI API
Operating Cost

Large Al models,
large GPUs

Orchestrating a brighter world N Ec

Summary

* Introduced DiCE-C, a cost-efficient system for deploying vision applications in cloud
environments

* DICE-C programmatically generates distributed code by leveraging runtime-exposed
tool documentation

* DICE-C reduces GPU idle time and supports the use of smaller, cost-efficient GPUs by
dynamically managing API| calls as independent services on Kubernetes

* Experimental evaluations on a real-world insurance application demonstrated that
DiCE-C achieves an average cost reduction of 32% on identical GPU hardware and up
to 72% when using smaller GPUs

18 “\Orchestrating a brighter world N Ec

\Orchestraling a brighter world N E‘

\Orchestrating a brighter worlad

NEC

NEC Laboratories America

	Slide 1: LLM-based Distributed Code Generation and Cost-Efficient Execution in the Cloud
	Slide 2: Brief bio
	Slide 3: DiCE and DiCE-M system
	Slide 4: Example Serial code (for DiCE and DiCE-M)
	Slide 5: Example Distributed code for DiCE-M
	Slide 6: Example application for DiCE-C
	Slide 7: DiCE-C System overview
	Slide 8: DiCE-C application code (1/3)
	Slide 9: DiCE-C application code (2/3)
	Slide 10: DiCE-C application code (3/3)
	Slide 11: Runtime for Distributed code execution
	Slide 12: Baseline vs DiCE-C execution (1/2)
	Slide 13: Baseline vs DiCE-C execution (2/2)
	Slide 14: Experimental Setup
	Slide 15: Results (1/2)
	Slide 16: Results (2/2)
	Slide 17: Prototype system
	Slide 18: Summary
	Slide 19
	Slide 20

