

Tobias Reichel

tobias.reichel@zitis.bund.de

- Master`s degree in Mathematics
- Researcher at ZITiS
- Focus on forensic of autonomous vehicles

Mathias Gerstner

mathias.gerstner@oth-regensburg.de

- Master`s degree in Applied Research (Data Science)
- Ph.D. Student CarSec-Lab at OTH Regensburg
- Research focus on automated vehicles communication

Leo Schiller

leo.schiller@oth-regensburg.de

- Master`s degree in Computer Science
- Ph.D. Student CarSec-Lab at OTH Regensburg
- Research focus is on automotive security

- Development of a forensic process chain specifically for automated and connected road mobility.
- Evaluation of vehicle communication interfaces and network protocols to identify potential security risks.
- Assessment of the forensic relevance of collected vehicle data, considering technical, legal and regulatory factors.
- Implementation of robust data recording systems that ensure data security, integrity and privacy.

The Role and Vulnerabilities of Location Tracking Systems

Ubiquity of location-based technology

- Location tracking is essential in navigation, logistics, emergency response and more.
- Autonomy: SAE Level 3 (and higher) vehicles rely on GNSS for partial autonomy.

GNSS Jamming

- High-power interference signals
- Disrupts signal reception
 - -> Loss of positioning

GNSS Spoofing

- Transmitting counterfeit signals
- Stronger signals overlay real ones
 - -> Calculation of wrong position

GNSS Spoofing Explained

GNSS Spoofing Overview:

- Spoofing transmits fake signals stronger than the satellite signals.
- Goal: Trick the receiver into computing false position/time.
- Most common spoofing types:
 - Meaconing replayed GNSS signals
 - Code Carrier Attack fake replicated signals
- Navigation Data Attack forged navigation messages
- App-Level Spoofing Man-in-the-Middle
- Multi-method combinations for complex attacks

GNSS Spoofing – Practical Setup

- This is how the setup from the previous slide might look like in practice.
- Note the cable used to connect SDR and receiver to avoid broadcasting spoofed signals and possibly impacting other devices.

Countermeasures

- Discarding messages with an abnormally high signal strength.
- Ensuring signals from different satellites arrive from different directions, by utilizing signal polarization.
- Better Standards:
 - Galileo OS-NMA
 - Galileo CAS on E6 (for AD)

Simulation Setup

- Position comes from the simulation

- Corresponding I/Q data is computed with gps-sdr-sim-realtime

Once for the true position

Once for the wrong position -> Spoofing

- Outputs are merged, with the "normal" signal dampened

- GNSS-SDR is used to reinterpreted the data to NMEA

GNSS Spoofing Detection in Autonomous Vehicles

Detection Techniques:

- LSTM models for anomaly detection (Dasgupta et al.)
- Error covariance analysis in Kalman filters (Liu et al.)
- Hybrid sensor fusion: GNSS + IMUs + odometry
- Slow-drift attacks in urban settings highlight stealth
- Physics-based IDS monitor vehicle behavior in real time
- Machine learning enhances early spoofing detection

Forensic Recorders

- Multiple forensic frameworks could be investigated
- Standard forensic investigation:
 - Strategic preparation
 - Operational preparation
 - Data collection
 - Investigation
 - Data analysis
 - Documentation

EDR

- Mandatory
- Last 5 seconds
- Crash related data

DSSAD

- (soon) mandatory
- Last few minutes
- ADAS related data

AV-Guard

- Not mandatory
- Days to years
- Processed sensor data

- EDR:
 - Speed data of GNSS and speedometer
- DSSAD:
 - Check if and how much control the vehicle systems had
- AV Guard:
 - Route data as GPS points

Result: Difficulties in detecting GNSS Spoofing with such a limited amount of data.

- Consider use cases for attacks
 - Geofencing
 - Kidnapping executed by triggering the vehicles safe mode
- Consider interesting data points
- Validate it with the simulation setup

Expected interesting data points:

- Route data and camera pictures, i.e. dashcams
- Raw sensor data, e.g. NMEA

Thank you for your attention

Do you have any questions?