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Simplification forces
« Strong tendency for simplification
« The simplest form is realized by the prototype

Prototype detection by potentiality reduction

» The prototype detection is realized by simplifying network
configurations by synchronic potentiality reduction

Neutralization or weakening potentiality reduction

O u tl | n e « The synchronic potentiality is sometimes too strong in
simplifying network configuration

« Diachronic potentiality is introduced to neutralize or
weaken the strong performance of synchronic potentiality
reduction,

Application to artificial data set
» The prototype was detected in the beginning of learning

« At the same time generalization was improved e
by neutralization of two potentialities

Related and future works
 Implicit regularization



Simplification Forces

« Simplifying network configuration

* Neural networks have strong forces to simplify
network configurations as well as input patterns

* Only by this simplification, neural networks can
deal with seemingly complicated data sets

« By dealing with only simpler portion of data set

« Complexity against simplicity
« Complexity of networks and data sets seem to be
contradictory to the principle of simplicity tendgigey.




Simplification Anywhere

« Simple components and procedures

* Neural networks are constructed in very simple way.
Any components inside and learning procedures are
simple

* Only the collective behaviors of all simple components
with simple learning procedures can realize seemingly
complicated behaviors

« Simplicity anywhere
« When we consider this fact, the simplicity seems to be
more easily accepted

« There are many examples to support this simplicity
tendency

« One of the typical examples is the implicit regularizafign &




Simplification by Prototype

* Prototype simplification hypothesis

* We here suppose that simplification is realized
by prototype networks

* Prototype

» The prototype networks are assumed to be the
simplest ones within given network resources

» Surface network production

« From it, we can generate surface complicated
networks

« Simplification and prototype

« Simplification forces can be observed by
detecting the simplest prototype




Synchronic Potentiality
Reduction for Prototype

* Prototype finding

» The protype is the simplest network, deeply hidden in the
surface networks

« We need to develop a method to make the prototype as
overt as possible

 To transform complex surface networks to the prototype, we
need to eliminate unnecessary information

« Synchronic potentiality for prototype

« Synchronic potentiality has been developed to reduce
unnecessary information




Strong Synchronic Potentiality

e Strong potentiality reduction

* The potentiality is a latent ability of component to be
transformed into information necessary for
structuring a network

* The synchronic potentiality is sometimes too strong
In reducing the potentiality

* Neutralization or weakening

* For extracting important information, neutralization
(weakening) of strong potentiality reduction is
needed

* For weakening learning, we try to use diachrah
potentiality 4



Neutralization
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Synchoronic Potentiality Reduction

* synchronic Potentiality

 Individual potentiality

« The individual potentiality is the
absolute connection weight

* Relative potentiality

 Individual potentiality should be
divided by its maximum value

» Potentiality

« Potentiality is the sum of all relative
individual potentialities

* Relation to entropy

* The potentiality is a simplified
entropy function without the
logarithmic function

* The potentiality can be easily
computed

« This implies that the potentiality is
very strong for simplification
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Diachronic Potentiality

« Synchronic potentiality

» Potentiality reduction is
Perfo_rme_ In a state, fixed at a
earning time t

« Diachronic and time-dependent
potentiality
» Diachronic potentiality is time-
dependent
» Diachronic potentiality is
go?trolled with the parameter
eta

« This potentiality decreases as the
parameter beta increases

* Neutralizing synchronic
potentiality

« Synchronic potentiality reduction
IS neutralized by diachronic
potentiality time-dependently
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Neutralization

« Synchronic potentiality

 Decreasing when the
parameter beta increases

e Diachronic potentiality

* Increasing when the beta
Increases

 Neutralization

e aiming to increase
synchronic potentiality
implicitly by the diachronic
potentiality increasing
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Application to Artificial Data

SEt 10 hidden layers with 10 neurons
(2,3)‘3 ﬂ;l 1
Target
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* Interpretation o ¥ ® ®_ o
« The main objective is to . . ’ ®  Bankrptcy
interpret how a network 7input ¢ ‘
responds to an input O
® O @
 The network is forced to be the
simplest one and close to the
prototype for interpretation
» Because the prototype is the O

simplest one, the interpretation
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Estimating

Prototypes o 2
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« The prototype should be ° o °
estimated by compressing O
actual multi-layered neural ® O O
networks

. 10 hidden layers with 10 neurons
* For example, a multi-layered

neural network is

cotrrr]]pr?shs_deg mtlo a nett\)/vork

without hidden layers -
supposing that al activgtion Compression
functions are linear
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« Comparison Q/O
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corresponding estimated
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Data Description and Supposed
Prototype
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« Data description
» An artificial data set was created with linear and non-linear inputs
* Inputs from No.5, 6, 7 were created nonlinearly to the targets

* The supposed prototype was created by taking the correlation coefficients
between those inputs and targets

« Objectives
* We tried to examine whether the estimated prototype was similar to the
supposed prototype

+ We tried to examine how the prototype finding was related to
generalization performance

* We tried to interpret how the prototype responds to inputs



Potentiality
Neutralization

« Simple synchronic potentiality

When the simple synchronic
potentiality was used (beta=0)

The potentiality decreased and the
entropy decreased rapidly

Modest generalization

 Neutralization

As the parameter beta increased to
1.2, diachronic potentiality becomes
effective

Synchronic potentiality reduction
became weaker by using diachronic
potentiality

Entropy reduction became also
weaker

* Improved generalization
« This weakening was related to

improved generalization
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Effect of Neutralization

 Neutralization

* When the parameter
increased from 0 to 1.2,
the force of neutralization
becomes stronger

« Synchronic potentiality
bécame higher, when'the
arameter increased
romO0to 1.2

« Weakening synchronic
potentiality reduction
could be realized by
neutralization




Ratio
Potentiality

* Ratio potentiality

Ratio of estimated prototype to
the supposed prototype

As the ratio increases, similarity to
the supposed prototype increases

« Simple Synchronic
potentiality reduction
(beta=0)

The wide higher ratio potentialities
could be observed in the
beginning

* Neutralization(beta=1.2)

Three peaks with higher ratio
potentiality were detected

Strong forces to detect the
prototype were detected

Repeated neutralization had an
effect to structuralize networks to
have better generalization

Ratio

Ratio

Divergence
z % .

1.0
1
5
0.5 1 g‘
- b=
=
Ratio
0.0 T
1 300 1000
Steps
1.0+

0.5

0.0

500 1000
Steps

-

Divergence

Correlation

0.5 A

0.0

0.5

0.0

Divergence

——

Correlation

L.

[~

=
w

| Correlation

500 1000
Steps
{a) Linear

oo —eaafficiant
1 I ERLTC T oo
Steps

Simple

Steps
(b) Beta=0.0

fion

=0

gyﬁcfrﬁ

X iality,

1.0

Rota=0
DYl Y 1000

Steps

1.0

ﬁ

Z 0.5 0.5 0.5
==
0.0 r 0.0 T + 0.0 -
1 500 1000 1 500 1000 1 500 1000
Steps Steps Steps
(c) Beta=0.2
1.0 1.0 1.0 ]
L+ =
1= =
2 z 5
= 0.5 B8 (.5 = 0.5
- E
] &)
0.0 0.0 T 0.0
1 500 1000 1 500 1000 1 500 1000
Steps Steps Steps
(d) Beta=0.4
1.0 1.0 1.0 R —
= a =]
@ 0.5 2 0.5 = 05
- o =
0.0 T 0.0 T 1 LLRY] T
1 S00 1000 1 500 1000 1 500 1000
Steps Steps Steps
(&) Beta=0.9
1.0 1.0 1.0
Ist|peak 3rd peak N~ T
8 g
g 2nd pea o N | = +1
= 5
§os eutralizatign
- M )
eta=1.2
0.0 4 : 0.0+ ' 1 0.0 :
1 500 1000 1 500 1000 1 500 1000
Steps Steps Steps

(N Beta=1.2




Weights and Ratio Potentialities
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* Non-linear relation

* The individual ratio
potentiality was higher for
only the final non-linear input

* Only one non-linear input
could improve generalization
In the optimal case

* Prototype learning

» The prototype detection
made it possible to improve
generalization by networks
close to the prototype
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Generalization Accuracy

Peak Step Ratio Potent Divergence Testing
Ist 159 0.836 0.014 0.783
2nd 440 0.805 0.011 0.953
3rd 717 0.806 0.012 0.939

~ Optimal 314 0224  ( 0.108 0959

« Higher ratio potentiality
« Higher ratio potentiality could be observed three times

» Neutralized potentiality reduction tried to produce
networks close to the supposed prototype

« Better generalization
» Detecting the prototypes means better generalization

» By simpler network configurations, better generalization ¥
performance is possible




Summary of Experimental
Results

* Weakening synchronic potentiality
reduction

* Neutralization had an effect to weaken synchronic
potentiality reduction

« Strong force to detect the prototype

* By neutralization, networks were as close as
possible to the supposed prototype for the entire
learning

« Simple representation with better
generalization
« Neutralization produced simpler and linear

connection weights, keeping improved
generalization




Related and Future Work

« Simplification
* Itis necessary to show the existence of
simplification forces by many examples

« For example, we should examine how the
S|tmdpllf|cat|on force is related to conventional
studies

* Implicit regularization
* Neural networks and machine learning

« U-shaped learning
« Cognitive development

» Least effort principle
« Quantitative linguistics
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