VAN
PRACTICAL APPLICATIONSOF =

STATE-OF-THE-ART LARGE
LANGUAGE MODELS TO SOLVE REAL-
WORLD SOFTWARE ENGINEERING
PROBLEMS AUTONOMOUSLY

YURIJ MIKHALEVICH

&4 oA woLF

DUBAI, UNITED ARAB EMIRATES
EMAIL: YURIJeMIKHALEVI.CH

mailto:yurij@mikhalevi.ch

Yurij Mikhalevich, MSc Computer Science, is a
software engineer, machine learning engineer,
and researcher with over twelve years of industrial
software engineering experience and over ten
years of industrial machine learning engineering
experience focusing on computer vision, natural
language processing, and recommendation
systems. Presently, he is building QA Wolt Al - the
next-level Al expert at creating E2E tests.

RESEARCH
INTERESTS

On the right are Yurij's current
primary research interests.

Computer Vision

Both image and video processing,
with the current focus on diffusion
models and vision transformers.

Natural Language Processing
With a focus on recommendation
systems and generative language
models.

Reinforcement Learning

Systems that learn from the
environment are fascinating.

INTRODUCTION

In this work, we explore the practical application of cutting-edge LLMs as autonomous
software engineers on real-world tasks. We design an experiment in which an Al-
driven coding agent is given only the natural-language description of a software issue
(as one would find in a bug tracker or feature request) and is tasked with resolving the
issue by modifying the codebase without human assistance. We evaluate the following
state-of-the-art LLMs in this autonomous setting: Claude Sonnet 3.7, DeepSeek-V3,
DeepSeek-R1, and 03-mini-high. We have used the Aider agent to solve problems -
one of the best open-source Al software engineering agents. Additionally, we have
evaluated the Claude Code agent as one of the best closed-source Al software
engineering agents. We examine not only whether the LLM-powered agent can
produce a working solution but also the quality of the solution (linting, code style, user
experience) and the cost of the API calls.

RELATED WORKS: LLMS FOR CODE GENERATION
AND ASSISTANCE

The use of large neural models for code generation has rapidly progressed in recent years.
OpenAl's Codex model, which powers GitHub Copilot, was among the first to demonstrate that an
LLM trained on vast amounts of code can produce syntactically correct and often functionally
correct code for given descriptions. Subsequent models have pushed these capabilities further:
DeepMind’s AlphaCode achieved performance on par with average human competitors in
programming contests, signaling the potential of LLMs to handle complex algorithmic problems.
Recent developments in the field have demonstrated significant progress in computational
capabilities. Specitically, models such as OpenAl 03-mini-high, DeepSeek-R1, and Claude Sonnet
3.7 have established new performance standards. These advancements indicate the continued

rapid evolution of LLM capabilities, with potential implications for fully autonomous software
engineering agents.

METHOD: INTRO

Our research methodology is designed to evaluate each LLM’s ability to autonomously resolve real
software issues under controlled conditions. We selected the open-source project Aibyss, a web-
based Al competition game, as our testbed. Aibyss is a TypeScript project (Nuxt/Vue frontend with
a Node.js backend using Prisma ORM) where users write Al bots to compete in a game. We chose
Aibyss because it is a non-trivial codebase with realistic features and bugs, yet manageable in
size. From Aibyss'’s issue tracker, we picked ten issues that were open and well-described. These
issues covered a range of feature requests and bug fixes and were labeled by us based on the
perceived difficulty as “easy,” “medium,” or “harder”.

METHOD: TASK SELECTION

l.easy - “feat: draggable splitter between the code and the game screen should remember its position
between the page reloads”

2.easy - "feat(rating): highlight top results in k/d, kills, deaths, and food eaten columns in the rating table”

3.easy - “chore(World): double the frequency of food spawns”

4.medium - “feat: allow turning off the bots of some users by setting the “inactive” field in the database on the
user object to ‘true”

5.medium - “feat: ensure that the game screen occupies all available free space to the right of the code editor”

6.medium - “feat(rating): add a new column to the rating table displaying the number of times the user
submitted the code”

7.medium - “teat(sandbox): add an option to turn off sprites and replace them with circles to make debugging
easier”

8.harder - “bug: fix the issue causing the bot code to submit when the user opens “API reference”

9.harder - “feat: add code versions and an option to revert to a previous version”

10.harder - “feat: surface bot execution errors to the user”

The actual GitHub issues with their descriptions can be found on the Aibyss project GitHub issues page:

github.com /move-tast-and-break-things/aibyss /issues?q=is%3Aissue%20label%3Aai-agents-evaluation-2025-03

https://github.com/move-fast-and-break-things/aibyss/issues?q=is%3Aissue%20label%3Aai-agents-evaluation-2025-03

METHOD: AGENTS AND LLM VARIANTS

» Aider 0.75.2 + 03-mini-high 2025-01-31

e Aider 0.75.2 + DeepSeek-V3

e Aider 0.75.2 + DeepSeek-R1

o Aider 0.75.2 + Claude Sonnet 3.7 20250219

o Aider 0.78.0 + Claude Sonnet 3.7 20250219 with 32k thinking tokens - in this
variant, we enabled the “thinking mode” in Aider (using v0.78.0 with thinking support
for Claude 3.7)

o Claude Code 0.2.35 - Anthropic’s Claude Code is a proprietary agent with a CLI
interface very similar to Aider’s that uses the Claude Sonnet 3.7 model under the

hood; this can be seen as a closed-source counterpart to Aider, specifically tuned
for Claude

METHOD: AUTONOMY AND STOPPING CRITERIA

We configured the agents to operate fully autonomously.

Aider was run with the --yes-always flag, meaning it would automatically apply its
proposed actions. In the case of Claude Code, we approved all its prompts manually.
Each agent was allowed to iterate until it produced no further actions.

One exception to full autonomy was with the 03-mini-high model in Aider: often, this
model did not automatically load the files it needed, and would ask the user to add
certain files to its context. Whenever Aider+o3-mini-high requested a file, we manually

added exactly that file (and no additional help), then let it continue. No other agent
required such interventions.

METHOD: EVALUATION CRITERIA

» Works (Yes/No): Did the changes address the issue from the end-user’s perspective? For a
feature request, this meant the new functionality worked as intended. For a bug, the
erroneous behavior was fixed.

« Linting Check Pass: We ran the project’s linting scripts. If the agent’s final code did not
pass them, we marked that as a quality issue.

« User Experience (UX): We manually inspected if the solution introduced any noticeable UX
problems (e.g., a feature works but has a confusing Ul or performance lag).

 Code Quality: We reviewed the diffs to assess if the solution was implemented in a

reasonable and maintainable way. Inefficiencies, unmaintainable code, and obvious bugs
in the implementation were noted.

We selected these criteria because they mirror how work performed by a human software
engineer is usually evaluated. These qualitative judgments were used to label each successtul
solution with additional notes (e.g., “works, but suboptimal code” or “works, except fails
linting”). Finally, we measured the cost of each solution in USD.

IMPLEMENTATION

All agent runs were conducted in a consistent environment. We created a fresh Docker container for
each run, which checked out the Aibyss repository at commit b4e58b2 (to ensure all models started
from identical code) and installed the necessary tools (Node.js, Aider, Claude Code, etc.). The agent
was then launched inside the container and given the issue text to solve. The prompt given to each
agent was uniform: "Please solve the following issue. Title: <issue title> Description: <issue body>".
We ensured the project’s dependencies and database (SQLite for this test) were properly set up in
each container so that the agent could run the app or tests if it chose to. The Aibyss codebase was
about 3.5k lines of TypeScript/JavaScript. Each agent configuration was run on each of the 10 issues,
yielding 60 trials in total.

After an agent completed, we committed its changes to a new branch and opened a pull request on
GitHub. This allowed us to use continuous integration (Cl) results as an additional datapoint. We then
manually reviewed and tested the branch as described in the evaluation criteria. All of the PRs
created as part of this research can be found on GitHub:

github.com /move-tast-and-break-things /aibyss /pulls?q=is%3Apr+label%3Aai-agents-evaluation-
2025-03+

https://github.com/move-fast-and-break-things/aibyss/pulls?q=is%3Apr+label%3Aai-agents-evaluation-2025-03+
https://github.com/move-fast-and-break-things/aibyss/pulls?q=is%3Apr+label%3Aai-agents-evaluation-2025-03+

RESULTS

" . Aider 0.78.0 +
Aider 0.75.2 + Aider 0.75.2 +
Ml Aider 0.75.2 + Aider 0.75.2 + Claude Sonnet 3.7
Problem o3-mini-high DeepSeek-V3 DeepSeek-R1 Claude Sonnet 3.7 20250219 with 32k Claude Code 0.2.35
2025-01-31 20250219 : 3
thinking tokens
cost: $0.12 cost: $0.20 cost: $0.2928
cost: $0.04 cost: $0.0046 cost: $0.0092 . v'works)) v'works ; . v 'works
1 doeatli-wodlk docri't woik Anesitt Wtk linter check fail linter check fail v'linter check pass
UX is bad UX is bad UX is bad
code is bad v’ code is good v code is good
cost: $0.0070 cost: $0.07
cost: $0.05 : v'works] v'works i
2 it didn’t understand Zif;ﬂs;?ﬁgﬁ linter check fail di‘;i:;,f%g‘:k linter check fail ‘;‘i‘;j?i f};"i
the problem v UX is good v UX is good
v code is good v'code is good
cost: $0.03 cost: $0.0033 cost: $0.0066 cost: $0.04 cost: $0.07 cost: $0.1151
v works v works v works v works v works v works
3 vlinter check pass | vlinter check pass | linter check fail | vlinter check pass | vlinter check pass | linter check pass
v'UX is good v UX is good v UX is good v UX is good v UX is good v UX is good
v code is good v code is good v'code is good v'code is good v'code is good v'code is good
4 cost: $0.07 cost: $0.0043 cost: $0.0070 cost: $0.06 cost: $0.08 cost: $0.4942
doesn’t work doesn’t work doesn’t work doesn’t work doesn’t work doesn’t work
5 cost: $0.04 cost: $0.0042 cost: $0.0079 cost: $0.07 cost: $0.08 cost: $0.2085
doesn’t work doesn’t work doesn’t work doesn’t work doesn’t work doesn’t work
] cost: $0.0046) cost: $0.07 cost: $0.10 cost: $0.2523
6 d’;’)‘;i;,f%g:k it didn’t understand Zﬁéﬁ]ﬂi it didn’t understand | it didn’t understand | it didn’t understand
the problem the problem the problem the problem
cost: $0.09 cost: $0.4650
)))) v 'works v 'works
7 cust.’$0.22 cost: 5;0.0090 cost.'${].02 cost.‘$0.06 fhiiten ek fa fiter chack fail
doesn’t work doesn’t work doesn’t work doesn’t work : ;)
v UX is good minor UX issues
code is bad code is bad
cost: $0.0031 cost: $0.04 cost: $0.07 cost: $0.1518
_ v'works _ v'works v'works v'works
8 d({:)?;;'f%g?k v'linter check pass gﬂsn%?ggfi linter check fail linter check fail v'linter check pass
v'UX is good v'UX is good v'UX is good v'UX is good
code is bad code is bad code is bad v code is good
cost: $0.53
cost: $0.08 cost: $0.0062 cost: $0.01 cost: $0.10 cost: $0.12 | VWorks
9 5 5 5 ; : linter check fail
doesn’t work doesn’t work doesn’t work doesn’t work doesn’t work :
UX issues
code is bad
10 cost: $0.07 cost: $0.0082 cost: $0.02 cost: $0.05 cost: $0.16 cost: $0.50
doesn’t work doesn’t work doesn’t work doesn’t work doesn’t work doesn’t work
Total cost: $0.76 cost: $0.05 cost: $0.10 cost: $0.65 cost: $1.04 cost: $3.13
0 1/10 solved 2/10 solved 2/10 solved 3/10 solved 5/10 solved 5/10 solved
Easy solved 1/3 1/3 2/3 2/3 3/3 2/3
Medium solved 0/4 0/4 0/4 0/4 1/4 1/4
Harder solved 0/3 1/3 0/3 1/3 1/3 2/3

AIDER+*O3-MINI-HIGH PROMPTING THE USER TO

MANUALLY ADD THE FILE IT NEEDS

https://aider.chat/HISTORY.html#release-notes

> Please, solve the following issue. Title: feat: draggable splitter between the code and th
. e game screen should remember 1its position between the page reloads. Description: Let's pe
rsist it in the localStorage.

Based on your repository and the issue description, the file most likely to need changes 1is:

® pages/index.vue

This file probably contains the layout with the draggable splitter between the code editor
and the game screen. We’ll need to update the splitter’s behavior so that when 1ts position
changes, 1ts new value 1s stored in localStorage, and then on page load the saved position
1S read to set the proper Llayout.

Please add the pages/index.vue file to the chat so I can review the relevant section and
propose SEARCH/REPLACE blocks.

Tokens: 4.3k sent, 112 received. Cost: $0.0052 message, $0.0052 session.

> pages/index.vue I

Ul ADDED BY CLAUDE CODE FOR CODE
VERSIONING (ISSUE 9)

® 0 ® W Abyss %+ “

@ O @ :
@ Hlbuss Hi, yurij + log out - rating « ?

code history restore example code APl reference follow my bot

“« G @ localhost:3000 . 2

[/
>
-

const threatDetectionRadius = 58; close
const clusterDetectionRadius = 5@; // Radius within whi

const wallPenaltyRadius = 38; // Distance from wall whe Version from 3}21,‘2025,
4 const maxWallPenalty = @.5; // Maximum penalty factor 1 q2:15:50 PM

] const playerSpeed = 2;

WP e

Code history

3/21/2025,12:117:06

6 const evasionRadius = S/ Radius within which to g 1 const threatDetectionRadius = 5@; PM "
2 const clusterDetectionRadius = 5@; // R

8 [3 const wallPenaltyRadius = 3@; // Distan : .

] * @param {API} api] const maxWallPenalty = @8.5; // Maximum 3/21/2025, 12:16:59

] *, 5 const playerSpeed = 2; PM .

11 function steplapi) {] const evasionRadius = 1@8; // Radius wi

12 const me = api.me; 7

13 const otherPlayers = api.otherPlayers; 8 Tk 3/21/2025, 12:16:58 *
14 const previousPlayers = api.previousOtherPlayersSti a + @param {API} api PM .
15 19 =/ j

16 const previousPlayersMap = {}; 11 function steptapi! { 3/21/2025, 12:16:47 g‘*

17 for (const player of previousPlayers) { 12 const me = apl.me; PM .
18 previousPlayersMap [player.username] = player; 13 const otherPlayers = api.otherfPlaye

149 } 14 throw 213;

0 15 previousPlayers = api.prev

21 /f Initialize list for threats 16 i
22 const threats = [17 M

23 18 g

24 for (const player of otherPlayers) { 19 prev F

25 if (player.username === me.usérname) continue; 28

26 1 .

27 if (player.radius > me.radius) { 22

2 threats.pushiplayer); // Players larger th: 23 r : I

29 b 24

8 } 25 " nst player otherPlayer

31 26 player.username me.user .
32 // Process threats moving towards us for 27

33 let nearestThreat = null;

34 let minThreatDistance = Infinity; e

35 =

36 for (const threat of threats) {

37 const previousThreat = previousPlayersMap[threat.username];

38 if (!previousThreat) continue; // Can't determine movement

FUTURE PLANS

« Evaluating newer models: We plan to test open-source QwQ-32B with Aider to
see if it can match Claude’s performance. If successtul, this could open the door to
more accessible autonomous coding (not relying on closed APIs).

o Architect-editor agent design: We will experiment with an “architect” mode in
Aider, where one model (or one prompting style) is used to outline the solution
(select files to change, perhaps write pseudo-code or steps), and another model is
used as the “coder” to implement those steps.

« Scaling to more tasks and projects: Our current test set is small. We want to
expand the evaluation to include a wider variety of issues (Ul-heavy issues,
algorithmic challenges, integration tasks) and on different projects (perhaps some
Python backend projects, mobile app issues, etc.). This will paint a fuller picture of
where autonomous LLMs excel and where they fail in software engineering.

CONCLUSION

In conclusion, state-of-the-art LLMs, when coupled with a suitable agent framework,
are beginning to demonstrate practical utility in automating segments of software

development in a fully unsupervised manner. They function as knowledgeable but
tflawed junior developers, capable of writing code and solving problems in familiar
contexts, yet prone to mistakes that require oversight. By continuing to improve LLM
reasoning, integrating robust self-checks, and using clever orchestrations of multiple
models, we move closer to a future where Al agents can handle routine programming
tasks autonomously. Such a development could significantly accelerate software
engineering workflows, allowing human developers to push the boundaries of
innovation with the grunt work delegated to our Al collaborators.

VAN
PRACTICAL APPLICATIONSOF =

STATE-OF-THE-ART LARGE
LANGUAGE MODELS TO SOLVE REAL-
WORLD SOFTWARE ENGINEERING
PROBLEMS AUTONOMOUSLY

YURIJ MIKHALEVICH

&4 oA woLF

DUBAI, UNITED ARAB EMIRATES
EMAIL: YURIJeMIKHALEVI.CH

mailto:yurij@mikhalevi.ch

