An Evaluation of Reliability on Pair-wise Comparison Matrix in Fuzzy Data AHP

Shin-ichi Ohnishi, Takahiro Yamanoi Hokkai-Gakuen University, Japan Hokkaido University, Japan

Introduction

- Analytic Hierarchy Process (AHP) has been widely used in decision making. However, it is difficult to keep reliability of data because of worsening of consistency index of pair-wise comparison (data) matrix.
- For this situation, fuzzy data AHP is useful as an extension method.
- In this research, we consider an evaluation of consistency index on fuzzy data reciprocal matrix by use of a sensitivity analysis.

Hierarchy structure

- 1. Representation by a hierarchy
- . Pairwise comparison matrices
- 3. (Consistency check)
- 4. Local weights of criteria
- 5. Global weights of alternative

Pairwise comparison matrix (data)

table 1.3 Definition Intensity of importance

Intensity of importance	Definition
1	Equal importance
(3)	Moderate importance
5	Strong importance
7	Very strong importance
9	Extreme importance

table 1.4 pairwise comparison matrix

	A_1	A_2	A_3	weight
\mathbf{A}_1	1->(3	2	0.508
A_2	1/3	1	1/5	0.113
A_3	1/2	5	1	0.379

$$X = (x_{ij})$$

- •Weights are normalized eigenvector corresponding to the maximum eigenvalue.
- •Checking consistency is necessary .

Even number is used if priority is between elements

Reciprocal is used without priority

$$x_{ii} = 1$$
, $x_{ij} \cdot x_{ji} = 1$ (reciplocal)

$$i, j = 1, ..., n$$

Consistency index(C.I.) cheking reliability

• The consistency of a comparison matrix is usually measured by the consistency index C.I.

$$C.I. = \frac{\lambda - n}{n - 1}$$

λ: maximum eigenvalue

n: size of matrix

C.I. ≥ 0.1 , \Rightarrow bad consistency \rightarrow re-evaluate again

Sensitivity analysis of consistency

$$A(\varepsilon) = A + \varepsilon D_A$$
 $\lambda(\varepsilon)$: eigenvalue of $A(\varepsilon)$

$$A = a_{ii}(i, j = 1, ..., n)$$
 perturbation $D_A = (a_{ij}d_{ij})$

$$\lambda(\varepsilon) = \lambda_A + \varepsilon \lambda^{(1)} + o(\varepsilon)$$

Eigenvalue of perturbed matrix

Eigenvalue of not

perturbed matrix

Fluctuation

$$\lambda^{(1)} = \frac{1}{\mathbf{w'}_1 \mathbf{w}_2} \sum_{i}^{n} \sum_{j}^{n} w_{2i} a_{ij} w_{1j} d_{ij}$$

6

Example of sensitivity analysis for consistency

table2.1 pairwise comparison matrix

table 2.2 example of sensitivity analysis of consistency

	Α	В	С	D	weight	
Α	1	2	5	7	0.489	
В	1/2	1	4	7	0.326	
С	1/5	1/4	1	8	0.146	
D	1/7	1/3	1/8	1	0.040	

	А	В	С	D
Α		0.149	0.184	-0.332
В			0.265	-0.117
С				0.449
D				

C.I.=0.132

The biggest absolute value has most influence.

C.I.⁽¹⁾ =
$$\sum_{i}^{n} \sum_{j}^{n} g_{ij} d_{ij}$$

Componets of fuzzy data matrix (Ohnishi, Dubois, Prade 2006)

fuzzy data

$$\widetilde{r}_{ij} = (l_{ij}, r_{ij}, u_{ij})_{\Delta}$$

$$\mu_{ij}(r_{ij})=1$$

$$\mu_{ij}(l_{ij}) = \mu_{ij}(u_{ij}) = 0$$

Reciprocity

$$\mu_{ij}(r) = \mu_{ji}(1/r)$$

core
$$(\tilde{r}_{ji}) = 1/r_{ij}$$

supp $(\tilde{r}_{ji}) = [1/u_{ij}, 1/l_{ij}]$

Optimal degree of satisfaction and weight

$$\alpha^* = \max_{w_1, \dots, w_n} \min_{i, j} \left\{ \mu_{ij} \left(\frac{w_i}{w_j} \right) \right\}$$

If all \tilde{r}_{ij} (i < j) are triangular fuzzy numbers $(l_{ij}, r_{ij}, u_{ij})_{\Delta}$,

[NLP]

Maximize α

$$w_{j} \{l_{ij} + \alpha(r_{ij} - l_{ij})\} \le w_{i} \le w_{j} \{u_{ij} + \alpha(r_{ij} - u_{ij})\}$$

$$\sum_{i=1}^{n} w_{i} = 1 \qquad (i, j = 1, ..., n)$$

					_	
	1	$(1, 3, 5)_{\triangle}$	(2, 5, 7) _△	(6, 8, 9) _△		
fuzzy doto		1	(1, 2, 4) _△	$(2, 4, 5)_{\triangle}$	6	3 9
fuzzy data			1	$(0.5, 2, 3)_{\triangle}$		r u
				1		
	1	[<mark>2.42</mark> ,3.58]	[4.13,5.58]	[7.42, <mark>8.29</mark>]	[Lij, U	J_{ii}
α-cut interv	val	1	[1.71,2.58]	[<mark>3.42</mark> ,4.29]	L—97 S	
data			1	[<mark>1.57</mark> ,2.29]		
				1	$\alpha^*=0.7$	711
	1	<mark>2.42</mark>	5.28	<mark>8.29</mark>	w_1	0.581
crisp data		1	2.18	<mark>3.42</mark>	w_2	0.240
Crisp data			1	1.57	w_3	0.110
				1	W_4	0.070
				T		

Sensitivity analysis of consistency index on fuzzy data pair-wise comparison matrix

Fuzzy number

$$\widetilde{r}_{ij} = (l_{ij}, r_{ij}, u_{ij})_{\Delta}$$

- (1)analysis on core r
- (2) analysis on support set (interval [l, u])
 - \checkmark Combination of endpoints l, u
 - > all combination
 - \triangleright endpoint of α -cut-set for calculating weights
 - > endpoint of Core greater than 1
- (3) analysis on α -cut-set (interval [L, U])

Conclusions

- ✓ Fuzzy number data AHP
- Sensitivity analysis for consistency
- ◆ Consider an evaluation of consistency index on fuzzy data pair-wise comparison matrix, by use of sensitivity analysis.
- \diamond Selecting core, endpoints of fuzzy data or α -cut set.

In the future

- Other index for consistency
- **♦** Numerical experiment using real data.