
Runtime-configurable data correlation
A C++-template-based framework for the automatic genera-
tion of data accessors with a focus on low programmer effort
and low code repetition

Birk Magnussen
FreeSpace 2 Source Code Project

birk@bmagnu.net

DBKDA - March 2025 Birk Magnussen

mailto:birk@bmagnu.net

About Me

Birk MagnussenDBKDA - March 2025 2/16

Received a Dr. rer. nat. in computer science in 2024
from the University of Kassel
Specializes in optical sensor data processing using
machine learning
Member of the FreeSpace 2 Source Code Project
since 2020
Core contributions in architecture and API design,
rendering, and VR support

Introduction
The Problem with 3D-Rendering as an Example

Birk MagnussenDBKDA - March 2025 3/16

Programmer-Defined Correlation In-/Outputs:

Properties
(inputs):

radius
velocity

...

Render settings
(outputs):

scale
color tint

...

User-Defined Correlations at Runtime:
radius

velocity
...

scale
color tint

...
multiply by

Introduction
The Problem with 3D-Rendering as an Example

Birk MagnussenDBKDA - March 2025 3/16

Programmer-Defined Correlation In-/Outputs:

Properties
(inputs):

radius
velocity

...

Render settings
(outputs):

scale
color tint

...

User-Defined Correlations at Runtime:
radius

velocity
...

scale
color tint

...
multiply by

Introduction
Simple Solution

Birk MagnussenDBKDA - March 2025 4/16

“Just hardcode it!”

1 Lots of boilerplate code for parsing at runtime
2 The 3D-rendering example has more than just spheres

→ Other object types have different in- and outputs
→ We want to avoid repeating boilerplate code
→ Some inputs may be shared between different object types, we want to avoid repeating

code for these common inputs
3 A large number of possible inputs bloats the code

Introduction
Ideal Solution

Birk MagnussenDBKDA - March 2025 5/16

Object Sphere:
...
var Radius
var Velocity
...
var Correlations:

with Inputs:
Radius
Velocity

with Outputs:
Scale
Color Tint

func render:
var Sphere = ...
var Scale = Sphere.Correlations

:GetOutput(Scale)
renderWithScale(Sphere, Scale)

Goal

Make Correlations a reusable library.
Don’t require more information and code for each inputs
than the member variable name.
Automatically generate accessor code at compile-time.
→ Possible in C++ with template metaprogramming

Introduction
Ideal Solution

Birk MagnussenDBKDA - March 2025 5/16

Object Sphere:
...
var Radius
var Velocity
...
var Correlations:

with Inputs:
Radius
Velocity

with Outputs:
Scale
Color Tint

func render:
var Sphere = ...
var Scale = Sphere.Correlations

:GetOutput(Scale)
renderWithScale(Sphere, Scale)

Goal

Make Correlations a reusable library.
Don’t require more information and code for each inputs
than the member variable name.
Automatically generate accessor code at compile-time.
→ Possible in C++ with template metaprogramming

Solution Concept

Birk MagnussenDBKDA - March 2025 6/16

Code requests output

Check parsed
correlation definitions

Grab required inputs

Calculate correlates

Addressing using enums

Each output enum has a list contain-
ing user-defined correlation data

Inputs encoded as template types

Use existing curve frameworks

Solution Concept

Birk MagnussenDBKDA - March 2025 6/16

Code requests output

Check parsed
correlation definitions

Grab required inputs

Calculate correlates

Addressing using enums

Each output enum has a list contain-
ing user-defined correlation data

Inputs encoded as template types

Use existing curve frameworks

Solution Concept

Birk MagnussenDBKDA - March 2025 6/16

Code requests output

Check parsed
correlation definitions

Grab required inputs

Calculate correlates

Addressing using enums

Each output enum has a list contain-
ing user-defined correlation data

Inputs encoded as template types

Use existing curve frameworks

Solution Concept

Birk MagnussenDBKDA - March 2025 6/16

Code requests output

Check parsed
correlation definitions

Grab required inputs

Calculate correlates

Addressing using enums

Each output enum has a list contain-
ing user-defined correlation data

Inputs encoded as template types

Use existing curve frameworks

Solution Concept

Birk MagnussenDBKDA - March 2025 6/16

Code requests output

Check parsed
correlation definitions

Grab required inputs

Calculate correlates

Addressing using enums

Each output enum has a list contain-
ing user-defined correlation data

Inputs encoded as template types

Use existing curve frameworks

Solution Concept

Birk MagnussenDBKDA - March 2025 7/16

Code requests output

Check parsed
correlation definitions

Grab required inputs

Calculate correlates

Addressing using enums

Each output enum has a list contain-
ing user-defined correlation data

Inputs encoded as template types

Use existing curve frameworks

Basic Template Design
The Main Struct

Birk MagnussenDBKDA - March 2025 8/16

1 enum class SphereRenderOutputs { Radius, Velocity, MAX };
2
3 template <typename OutputEnum , typename InputType ,
4 /∗ TODO I n p u t s ∗/>
5 struct Correlations {
6 float getValue(InputType in, OutputEnum out);
7 };

Note: This is simplified, in the code, there is an additional struct type that holds
data and strings required for parsing.

Basic Template Design
The Main Struct

Birk MagnussenDBKDA - March 2025 8/16

1 enum class SphereRenderOutputs { Radius, Velocity, MAX };
2
3 template <typename OutputEnum , typename InputType
4 typename InputGrab...>
5 struct Correlations {
6 using InputGrabTuple = tuple<InputGrab...>;
7 array<ParseData , OutputEnum::MAX> userDefs;
8 float getValue(InputType in, OutputEnum out);
9 };

Note: This is simplified, in the code, there is an additional struct type that holds
data and strings required for parsing.

Basic Template Design
The Main Struct

Birk MagnussenDBKDA - March 2025 8/16

1 enum class SphereRenderOutputs { Radius, Velocity, MAX };
2
3 template <typename OutputEnum , typename InputType
4 typename InputGrab...>
5 struct Correlations {
6 using InputGrabTuple = tuple<InputGrab...>;
7 array<ParseData , OutputEnum::MAX> userDefs;
8 float getValue(InputType in, OutputEnum out);
9 };

A list of types, each encoding the required information to generate an accessor
method, grabbing data from the sphere.

Basic Template Design
The Main Struct

Birk MagnussenDBKDA - March 2025 8/16

1 enum class SphereRenderOutputs { Radius, Velocity, MAX };
2
3 template <typename OutputEnum , typename InputType
4 typename InputGrab...>
5 struct Correlations {
6 using InputGrabTuple = tuple<InputGrab...>;
7 array<ParseData , OutputEnum::MAX> userDefs;
8 float getValue(InputType in, OutputEnum out);
9 };

Contains the parsed data for each correlation, stored by output for fast access.

Solution Concept

Birk MagnussenDBKDA - March 2025 9/16

Code requests output

Check parsed
correlation definitions

Grab required inputs

Calculate correlates

Addressing using enums

Each output enum has a list contain-
ing user-defined correlation data

Inputs encoded as template types

Use existing curve frameworks

Basic Template Design
Getting the Input

Birk MagnussenDBKDA - March 2025 10/16

1 template <size_t... idx>
2 float getInput(size_t inputIdx , InputType input,
3 index_sequence <idx...>) {
4 float result = 1.f;
5 ((idx == inputIdx ?
6 (result = tuple_element_t <idx, InputGrabTuple >
7 ::grab(input)), true : false) || ...);
8 return result;
9 }

Optimization Notes

Because all input grabbers are specified and processed at compile-
time, the entire input-request logic is inlineable, and does not need
any runtime lookups of input grabber functions or otherwise slow
dynamic dispatch.

Basic Template Design
Getting the Input

Birk MagnussenDBKDA - March 2025 10/16

1 template <size_t... idx>
2 float getInput(size_t inputIdx , InputType input,
3 index_sequence <idx...>) {
4 float result = 1.f;
5 ((idx == inputIdx ?
6 (result = tuple_element_t <idx, InputGrabTuple >
7 ::grab(input)), true : false) || ...);
8 return result;
9 }

InputType input is the input object iself (i.e. the sphere object)

Optimization Notes

Because all input grabbers are specified and processed at compile-
time, the entire input-request logic is inlineable, and does not need
any runtime lookups of input grabber functions or otherwise slow
dynamic dispatch.

Basic Template Design
Getting the Input

Birk MagnussenDBKDA - March 2025 10/16

1 template <size_t... idx>
2 float getInput(size_t inputIdx , InputType input,
3 index_sequence <idx...>) {
4 float result = 1.f;
5 ((idx == inputIdx ?
6 (result = tuple_element_t <idx, InputGrabTuple >
7 ::grab(input)), true : false) || ...);
8 return result;
9 }

C++ intricacies require use to use an index_sequence to allow allows iteration
through the compile-time list of input grabbers.

Optimization Notes

Because all input grabbers are specified and processed at compile-
time, the entire input-request logic is inlineable, and does not need
any runtime lookups of input grabber functions or otherwise slow
dynamic dispatch.

Basic Template Design
Getting the Input

Birk MagnussenDBKDA - March 2025 10/16

1 template <size_t... idx>
2 float getInput(size_t inputIdx , InputType input,
3 index_sequence <idx...>) {
4 float result = 1.f;
5 ((idx == inputIdx ?
6 (result = tuple_element_t <idx, InputGrabTuple >
7 ::grab(input)), true : false) || ...);
8 return result;
9 }

This fold expression generates a switch-case statement at compile-time to access
the grab method of the inputIdx-th input grabber.

Optimization Notes

Because all input grabbers are specified and processed at compile-
time, the entire input-request logic is inlineable, and does not need
any runtime lookups of input grabber functions or otherwise slow
dynamic dispatch.

Basic Template Design
Getting the Input

Birk MagnussenDBKDA - March 2025 10/16

1 template <size_t... idx>
2 float getInput(size_t inputIdx , InputType input,
3 index_sequence <idx...>) {
4 float result = 1.f;
5 ((idx == inputIdx ?
6 (result = tuple_element_t <idx, InputGrabTuple >
7 ::grab(input)), true : false) || ...);
8 return result;
9 }

Optimization Notes

Because all input grabbers are specified and processed at compile-
time, the entire input-request logic is inlineable, and does not need
any runtime lookups of input grabber functions or otherwise slow
dynamic dispatch.

Input Grabbers
Design Goal and Usage

Birk MagnussenDBKDA - March 2025 11/16

1 InputGrabber <&Sphere::Radius>
2 ...
3 InputGrabber <&Sphere::Physics, &PhysicsData::Velocity>

Why not just lambdas instead of pointer-to-members?

Lambdas as template parameters are C++20-only
Having static functions instead clutters the names-
pace
For simple member access, lambdas are much more
verbose and require more redundant syntax

Input Grabbers
Design Goal and Usage

Birk MagnussenDBKDA - March 2025 11/16

1 InputGrabber <&Sphere::Radius>
2 ...
3 InputGrabber <&Sphere::Physics, &PhysicsData::Velocity>

&Type::Member is a pointer-to-member, and can be used to access a member of
an object of the given type. Since the pointer-to-member is used as a template
parameter, it becomes part of the type information and is not runtime data.

Why not just lambdas instead of pointer-to-members?

Lambdas as template parameters are C++20-only
Having static functions instead clutters the names-
pace
For simple member access, lambdas are much more
verbose and require more redundant syntax

Input Grabbers
Design Goal and Usage

Birk MagnussenDBKDA - March 2025 11/16

1 InputGrabber <&Sphere::Radius>
2 ...
3 InputGrabber <&Sphere::Physics, &PhysicsData::Velocity>

A chain of pointer-to-members allows access of data that is not a direct member
of the input object.

Why not just lambdas instead of pointer-to-members?

Lambdas as template parameters are C++20-only
Having static functions instead clutters the names-
pace
For simple member access, lambdas are much more
verbose and require more redundant syntax

Input Grabbers
Design Goal and Usage

Birk MagnussenDBKDA - March 2025 11/16

1 InputGrabber <&Sphere::Radius>
2 ...
3 InputGrabber <&Sphere::Physics, &PhysicsData::Velocity>

Why not just lambdas instead of pointer-to-members?

Lambdas as template parameters are C++20-only
Having static functions instead clutters the names-
pace
For simple member access, lambdas are much more
verbose and require more redundant syntax

Input Grabbers
Implementation

Birk MagnussenDBKDA - March 2025 12/16

1 template <auto... Grabber> struct InputGrabber {
2 template <typename Current, auto Grab, auto... Others>
3 static auto grab_internal(Current input) {
4 if constexpr (sizeof...(Others) == 0){
5 return input.*Grab;
6 } else {
7 return grab_internal <decltype(input.*Grab)>,
8 Others...>(input.*Grab);
9 }

10 }
11 };

Requires a simple forwarding method

1 static float grab(InputType in) {
2 return grab_internal
3 <InputType , Grabber...>(input);
4 }

Optimization Notes

Because all if constexpr branches are evaluated at template-
instantiation time, the compiler can and will optimize this into
simple submember accesses as if it were hardcoded.

Further Expansion

The logic shown here was simplified. The actual code, using more
if constexpr branches is able to evaluate more than just pointer-
to-members, including but not limited to:

pointer-to-member-functions
array / tuple indexing
handling of optional / nullable data

Input Grabbers
Implementation

Birk MagnussenDBKDA - March 2025 12/16

1 template <auto... Grabber> struct InputGrabber {
2 template <typename Current, auto Grab, auto... Others>
3 static auto grab_internal(Current input) {
4 if constexpr (sizeof...(Others) == 0){
5 return input.*Grab;
6 } else {
7 return grab_internal <decltype(input.*Grab)>,
8 Others...>(input.*Grab);
9 }

10 }
11 };

Requires a simple forwarding method

1 static float grab(InputType in) {
2 return grab_internal
3 <InputType , Grabber...>(input);
4 }

Optimization Notes

Because all if constexpr branches are evaluated at template-
instantiation time, the compiler can and will optimize this into
simple submember accesses as if it were hardcoded.

Further Expansion

The logic shown here was simplified. The actual code, using more
if constexpr branches is able to evaluate more than just pointer-
to-members, including but not limited to:

pointer-to-member-functions
array / tuple indexing
handling of optional / nullable data

Input Grabbers
Implementation

Birk MagnussenDBKDA - March 2025 12/16

1 template <auto... Grabber> struct InputGrabber {
2 template <typename Current, auto Grab, auto... Others>
3 static auto grab_internal(Current input) {
4 if constexpr (sizeof...(Others) == 0){
5 return input.*Grab;
6 } else {
7 return grab_internal <decltype(input.*Grab)>,
8 Others...>(input.*Grab);
9 }

10 }
11 };

Access the data pointed to by the pointer-to-member if only one pointer-to-member
exists (as this if is marked constexpr, this is checked at compile time).

Requires a simple forwarding method

1 static float grab(InputType in) {
2 return grab_internal
3 <InputType , Grabber...>(input);
4 }

Optimization Notes

Because all if constexpr branches are evaluated at template-
instantiation time, the compiler can and will optimize this into
simple submember accesses as if it were hardcoded.

Further Expansion

The logic shown here was simplified. The actual code, using more
if constexpr branches is able to evaluate more than just pointer-
to-members, including but not limited to:

pointer-to-member-functions
array / tuple indexing
handling of optional / nullable data

Input Grabbers
Implementation

Birk MagnussenDBKDA - March 2025 12/16

1 template <auto... Grabber> struct InputGrabber {
2 template <typename Current, auto Grab, auto... Others>
3 static auto grab_internal(Current input) {
4 if constexpr (sizeof...(Others) == 0){
5 return input.*Grab;
6 } else {
7 return grab_internal <decltype(input.*Grab)>,
8 Others...>(input.*Grab);
9 }

10 }
11 };

If more than one pointer-to-member exists, get the data from the first and forward it to
the next pointer-to-member recursively.

Requires a simple forwarding method

1 static float grab(InputType in) {
2 return grab_internal
3 <InputType , Grabber...>(input);
4 }

Optimization Notes

Because all if constexpr branches are evaluated at template-
instantiation time, the compiler can and will optimize this into
simple submember accesses as if it were hardcoded.

Further Expansion

The logic shown here was simplified. The actual code, using more
if constexpr branches is able to evaluate more than just pointer-
to-members, including but not limited to:

pointer-to-member-functions
array / tuple indexing
handling of optional / nullable data

Input Grabbers
Implementation

Birk MagnussenDBKDA - March 2025 12/16

1 template <auto... Grabber> struct InputGrabber {
2 template <typename Current, auto Grab, auto... Others>
3 static auto grab_internal(Current input) {
4 if constexpr (sizeof...(Others) == 0){
5 return input.*Grab;
6 } else {
7 return grab_internal <decltype(input.*Grab)>,
8 Others...>(input.*Grab);
9 }

10 }
11 };

Requires a simple forwarding method

1 static float grab(InputType in) {
2 return grab_internal
3 <InputType , Grabber...>(input);
4 }

Optimization Notes

Because all if constexpr branches are evaluated at template-
instantiation time, the compiler can and will optimize this into
simple submember accesses as if it were hardcoded.

Further Expansion

The logic shown here was simplified. The actual code, using more
if constexpr branches is able to evaluate more than just pointer-
to-members, including but not limited to:

pointer-to-member-functions
array / tuple indexing
handling of optional / nullable data

Input Grabbers
Implementation

Birk MagnussenDBKDA - March 2025 12/16

1 template <auto... Grabber> struct InputGrabber {
2 template <typename Current, auto Grab, auto... Others>
3 static auto grab_internal(Current input) {
4 if constexpr (sizeof...(Others) == 0){
5 return input.*Grab;
6 } else {
7 return grab_internal <decltype(input.*Grab)>,
8 Others...>(input.*Grab);
9 }

10 }
11 };

Requires a simple forwarding method

1 static float grab(InputType in) {
2 return grab_internal
3 <InputType , Grabber...>(input);
4 }

Optimization Notes

Because all if constexpr branches are evaluated at template-
instantiation time, the compiler can and will optimize this into
simple submember accesses as if it were hardcoded.

Further Expansion

The logic shown here was simplified. The actual code, using more
if constexpr branches is able to evaluate more than just pointer-
to-members, including but not limited to:

pointer-to-member-functions
array / tuple indexing
handling of optional / nullable data

Additional Features

Birk MagnussenDBKDA - March 2025 13/16

In addition to the presented base functionality, the system handles a number of additional
features:

Automatic generation of code to parse the user definitions from provided string
names for in- and outputs
Convenience functions to generate constexpr correlation objects
A system very similar to inheritance in programming in order to reuse inputs for
similar correlations without needing to repeat the input definition.

Real-World Example
Definition

Birk MagnussenDBKDA - March 2025 14/16

Shortened and simplified excerpt of code of the FreeSpace Open game engine
1 enum c l a s s WeaponOutputs {
2 LASER_LENGTH_MULT,
3 LASER_RADIUS_MULT,
4 LASER_GLOW_MULT,
5 MAX
6 } ;
7 make_cor re la t ion_def in i t ion<weapon , WeaponOutputs>(
8 std : : a r ray {
9 std : : p a i r {”Laser Length Mult” , WeaponOutputs : :LASER_LENGTH_MULT} ,

10 std : : p a i r {”Laser Radius Mult” , WeaponOutputs : : LASER_RADIUS_MULT} ,
11 std : : p a i r {”Laser Glow Mult” , WeaponOutputs : :LASER_GLOW_MULT} ,
12 } ,
13 std : : p a i r {”Base Velocity ” , InputGrabber<&weapon : : weapon_max_vel>{}},
14 std : : p a i r {”Max Hitpoints ” , InputGrabber<&weapon : : weapon_info_index ,
15 &Weapon_info , &weapon_info : : weapon_hitpoints >{}},
16 std : : p a i r {”Parent Radius” , InputGrabber<&weapon : : objnum , &Objects ,
17 &objec t : : parent , &Objects , &ob jec t : : rad ius >{}});

Results

Low complexity and lines-of-code to create correlations.
No redundant handling or parsing code is required.
Required code is almost entirely descriptive.
Access code is generated at compile-time with no dynamic
runtime dispatch and has thus a very low performance cost.

Real-World Example
Definition

Birk MagnussenDBKDA - March 2025 14/16

Shortened and simplified excerpt of code of the FreeSpace Open game engine
1 enum c l a s s WeaponOutputs {
2 LASER_LENGTH_MULT,
3 LASER_RADIUS_MULT,
4 LASER_GLOW_MULT,
5 MAX
6 } ;
7 make_cor re la t ion_def in i t ion<weapon , WeaponOutputs>(
8 std : : a r ray {
9 std : : p a i r {”Laser Length Mult” , WeaponOutputs : :LASER_LENGTH_MULT} ,

10 std : : p a i r {”Laser Radius Mult” , WeaponOutputs : : LASER_RADIUS_MULT} ,
11 std : : p a i r {”Laser Glow Mult” , WeaponOutputs : :LASER_GLOW_MULT} ,
12 } ,
13 std : : p a i r {”Base Velocity ” , InputGrabber<&weapon : : weapon_max_vel>{}},
14 std : : p a i r {”Max Hitpoints ” , InputGrabber<&weapon : : weapon_info_index ,
15 &Weapon_info , &weapon_info : : weapon_hitpoints >{}},
16 std : : p a i r {”Parent Radius” , InputGrabber<&weapon : : objnum , &Objects ,
17 &objec t : : parent , &Objects , &ob jec t : : rad ius >{}});

Results

Low complexity and lines-of-code to create correlations.
No redundant handling or parsing code is required.
Required code is almost entirely descriptive.
Access code is generated at compile-time with no dynamic
runtime dispatch and has thus a very low performance cost.

Real-World Example
Usage Statistics

Birk MagnussenDBKDA - March 2025 15/16

Including indev branches, the FreeSpace Open game engine has the
following usage statistics for the correlation system:

• Number of distinct correlation sets: 8
• Of which are inherited sets with shared inputs: 5
• Number of explicitly coded inputs: 22
• Number of inputs through inherited correlation sets: 25
• Number of total inputs: 47
• Number of outputs: 57
• Total lines of code: 215

Links

Correlation system
in FreeSpace Open:

Example correlation definition
in FreeSpace Open:

Example correlation usage
in FreeSpace Open:

https://github.com/scp-fs2open/fs2open.github.com/blob/23dc22e1728f27e7519414c976a2caf52069c241/code/utils/modular_curves.h
https://github.com/scp-fs2open/fs2open.github.com/blob/23dc22e1728f27e7519414c976a2caf52069c241/code/weapon/weapon.h#L712
https://github.com/scp-fs2open/fs2open.github.com/blob/23dc22e1728f27e7519414c976a2caf52069c241/code/weapon/weapons.cpp#L9163

Real-World Example
Usage Statistics

Birk MagnussenDBKDA - March 2025 15/16

Including indev branches, the FreeSpace Open game engine has the
following usage statistics for the correlation system:

• Number of distinct correlation sets: 8
• Of which are inherited sets with shared inputs: 5
• Number of explicitly coded inputs: 22
• Number of inputs through inherited correlation sets: 25
• Number of total inputs: 47
• Number of outputs: 57
• Total lines of code: 215

Links

Correlation system
in FreeSpace Open:

Example correlation definition
in FreeSpace Open:

Example correlation usage
in FreeSpace Open:

https://github.com/scp-fs2open/fs2open.github.com/blob/23dc22e1728f27e7519414c976a2caf52069c241/code/utils/modular_curves.h
https://github.com/scp-fs2open/fs2open.github.com/blob/23dc22e1728f27e7519414c976a2caf52069c241/code/weapon/weapon.h#L712
https://github.com/scp-fs2open/fs2open.github.com/blob/23dc22e1728f27e7519414c976a2caf52069c241/code/weapon/weapons.cpp#L9163

Conclusion

Birk MagnussenDBKDA - March 2025 16/16

System achievements:
The correlation system only needs low-
complexity, short, and descriptive code to be
used.
→ It can save significant headache compared

to hard-coded approaches.
Dispatch and accessor generation occurs fully at
compile-time, and is thus fully inlineable.
→ Less performance concern compared to dy-

namic lookup and dispatch.
No changes are required to the data structures
that are used as data inputs.
→ Easy retrofitability into existing C++

code.

Future work:
Turn the correlation system into
a standalone library.

Detach the correlation sys-
tem from other in-engine
subsystems (such as parsing
and curve systems).

If you are interested in using this system
yourself, do not hesitate to ask me at
birk@bmagnu.net

mailto:birk@bmagnu.net

