

DIGITAL 2025, Venice, Italy

A STUDY AMONG YOUNG ADULTS IN GERMANY

EXPLORING THE INFLUENCE OF TECHNOLOGY

EXPOSURE ON COMPUTER SCIENCE SELF-CONCEPT

Claudia Hess, Sibylle Kunz, Cornelia Heinisch & Adrienne Steffen

CONTEXT OF THE RESEARCH PRESENTED: YOUNG ADULTS' CAREER CHOICES REGARDING COMPUTER SCIENCE

- Mixed-method study about young adults' career choices regarding computer science (CS)
- The "overall" research question:
 - Why do teenagers and young adults decide in favor of or against a university degree or vocational training in computer science?
 - And especially: Are there any differences between the genders and if so, what are they?
- Why is it important to understand these career decisions?
 - High demand for ICT specialists and at the same time a shortage of skilled labor
 - Gender disparity

- Closed and open-ended questions
- Duration approx. 15 minutes
- Recruitment via market research institute
 - Phase 1: Online Survey

Phase 2: Qualitative Interviews

- Guided interview
- Selected persons from phase 1
- Duration approx. 45 minutes
- Online video conference

INFLUENCING FACTORS

Source: own depiction

07/07/25 3 Advances on Societal Digital Transformation (DIGITAL 2025), Exploring the Influence of Technology Exposure on Computer Science Self-Concept - A Study Among Young Adults in Germany

TODAY'S FOCUS: EXPOSURE TO TECHNOLOGY

Source: own depiction

07/07/25 4 Advances on Societal Digital Transformation (DIGITAL 2025), Exploring the Influence of Technology Exposure on Computer Science Self-Concept - A Study Among Young Adults in Germany

Can exposure to technology inspire interest in Computer Science by making young people more comfortable with the basic concepts and applications of technology?

CURRENT RESEARCH ON THE IMPACT OF

TECHNOLGY EXPOSURE

TECHNOLOGY EXPOSURE OF YOUNG ADULTS

- Technology exposure: various experiences and opportunities through which individuals interact with information and communication technologies (ICT)
- Key indicators include e.g. (Salanova & Llorens, 2009)
 - the amount of time using technology,
 - frequency of use,
 - participation in technology training,
 - personal ownership
- Different situations / locations in which young adults come into contact with ICT

Source: own depiction

EMPIRICAL STUDIES ON THE IMPACT OF YOUNG ADULT TECHNOLOGY EXPOSURE

- Mixed results based on **PISA** (OECD's Programme for International Student Assessment) data on how ICT availability, use, and engagement affect students' math and science scores (Courtney et al., 2022)
- Starting in 2025, PISA will include the "Learning in the Digital World" test to assess digital literacy (OECD, 2023)
- Pre-tests indicate that students who regularly use ICT across various subjects tend to perform better (OECD, 2022)
- Studies show a positive influence of STEM programs on a career decision in STEM (Yoel & Dori, 2022)

Source: own depiction

COMPUTER SCIENCE SELF-CONCEPT

ABILITY SELF-CONCEPT

- Expectancy-value theory by Eccles and Wiegfield (1995) posits that a person's motivation to engage in a particular task is determined by

- their expectation of success in that task,
- the value they place on it.
- Self-concept: refers to a person's perception of their own competence in a particular domain, e.g., to perform tasks or succeed in activities

— Well research self-concept: **self-concept of math ability**, influenced by, e.g.

- previous experiences regarding math,
- feedback from significant others, such as parents, teachers, and peers,
- social comparisons, e.g., to classmates in math tasks (Sainz & Eccles, 2012)

Source

COMPUTER SCIENCE SELF-CONCEPT

- Refers to the question "How do I assess my own skills in CS?"
 - ... in computer science as an academic and professional discipline
 - Think of a spectrum from using ICT and digital literacy to programming, understanding algorithms, or problem-solving
 - CS self-concept: confidence in handling tasks central to the field, such as coding or designing computational solutions

OUR STUDY: THE IMPACT OF TECHNOLOGY EXPOSURE

ON COMPUTER SCIENCE SELF-CONCEPT

SAMPLE CHARACTERISTICS

- Target group: teenagers and young adults aged between 15 and 20 years
- Online survey conducted in June / July
 2024
- Cooperation with a market research organization
- Conducted nationwide in Germany
- Language: German
- Closed and open-ended questions
- About 15 minutes completion time
- -1357 completed questionnaires
- After quality check (e.g. sorting out botgenerated answers): 822 fully completed questionnaires

Age	Female N (%)	Male N (%)	Non-binary N (%)	Total (%)
15	37 (7.3%)	44 (14.0%)	0	81 (9.9%)
16	60 (11.9%)	53 (16.8%)	0	113 (13.8%)
17	84 (16.6 %)	58 (18.4%)	0	142 (17.3%)
18	133 (26.3%)	75 (23.8%)	0	208 (25.3%)
19	99 (19.6%)	37 (11.7%)	1 (100%)	136 (16.6%)
20	93 (18.4%)	48 (15.2%)	0	141 (17.2%)
Total	506 (100%)	315 (100%)	1 (100%)	822
			Excluded from all gender- specific analyses	

YOUNG ADULTS' TECHNOLOGY EXPOSURE AT HOME

- Most of the young adults have consistent internet access.
- VR glasses have the least exposure.

Source:own depiction.

07/07/25 14 Advances on Societal Digital Transformation (DIGITAL 2025), Exploring the Influence of Technology Exposure on Computer Science Self-Concept - A Study Among Young Adults in Germany

INTERNATIONAL UNIVERSITY OF APPLIED SCIENCES

GENDER DIFFERENCES REGARDING YOUNG ADULTS' TECHNOLOGY EXPOSURE AT HOME

Young men more often use a notebook / computer at home than young women. The same applies to game consoles and VR glasses.

- Young women more often use tablets than young men.
- Results are in line with a
 German-wide study on
 the media equipment
 and media usage of
 teenagers in 2024
 (Feierabend et al., 2024)

Source: Own depiction.

YOUNG ADULTS' COMPUTER SCIENCE SELF-CONCEPT

- Established scale based on expectancy-value theory
- -5-point Likert scale
- Young men have a significantly stronger computer science self-concept (M_m=3.35, SD=0.891).
- They rate their own skills significantly higher than young women (M_f=2.72, SD=0.906).
- The difference is statistically significant (t(819)=-9.735, p<.001) with a medium to large effect size (Cohen's d = 0.699)

Mean value (aggregated) for computer science self-concept, scale 1-5

Source: Own depiction.

IMPACT OF TECHNOLOGY EXPOSURE ON CS SELF-CONCEPT

- Hypothesis: The higher a young adult's overall exposure to technology, the higher their CS self-concept

- Pearson's Correlation Coefficient
- Strong positive correlation for young men (r_m(313)=.542, p<.001)
- Moderate positive correlation for young women (r_f(504)=.292, p<.001)

Source: Own Depiction.

07/07/25 17 Advances on Societal Digital Transformation (DIGITAL 2025), Exploring the Influence of Technology Exposure on Computer Science Self-Concept - A Study Among Young Adults in Germany

INTERNATIONAL UNIVERSITY OF APPLIED SCIENCES

TECHNOLOGY EXPOSURE AS PREDICTOR OF COMPUTER SCIENCE SELF-CONCEPT ?

- Examine whether technology exposure predicts the CS self-concept
- Regression Analysis
 - Small effect for you women with R² = .084, F(1,504) = 47.134, p < .001
 - Strong effect for young men with R² = .294, F(1,313) = 130.110, p < .001 → Approximately 30% of their CS self-concept is explained by technology exposure
- Further factors such as school experiences, family background, or friends contribute
 Technology exposure has varying predictive power on the CS self-concept based on gender
 Young women need additional initiatives to address other influential factors

DISCUSSION

CONCLUSIONS & DISCUSSION

- Technology exposure plays a role in shaping CS self-concept, it is not the sole factor, especially in the case of young women
- Baseline familiarity may build initial confidence
- More advanced experiences like using a computer for programming or a VR setting for simulations – are required
- Recommendations to translate technology exposure into an increased CS self-concept
 - -> school lessons that provide creative, hands-on, project-based CS learning opportunities
 - → integrate CS concepts across subjects, e.g., use and discuss generative AI in art
 - → Particular focus on girls and young women

M. Courtney, M. Karakus, Z. Ersozlu, and K. Nurumov, "The influence of ICT use and related attitudes on students' math and science performance: multilevel analyses of the last decade's PISA surveys," Large-Scale Assess. Educ., vol. 10, no. 8, pp. 1-26, Aug 2022, doi: 10.1186/s40536-022-00128-6.

J. S. Eccles and A. Wigfield, "In the Mind of the Actor: The Structure of Adolescents' Achievement Task Values and Expectancy-Related Beliefs," Pers. Soc. Psychol. Bull., vol. 21, no. 3, pp. 215–225, Mar. 1995, doi:10.1177/0146167295213003

S. Feierabend, T. Rathgeb, Y. Gerigk, and S. Glöckler, "JIMStudie 2024 - Jugend Information Medien," Medienpädagogischer Forschungsverbund Südwest (mpfs), 2024. [Online]. Available from: https://mpfs.de/app/uploads/2024/11/JIM_2024_PDF_barrier earm.pdf, retrieved: 05, 2025

OECD, "Technology use at school and students' learning outcomes: exploring the relationship with new data from Germany," OECD Education Spotlights, vol. 17, 2022. [Online]. Available from: <u>https://www.oecd.org/content/dam/oecd/en/publications/reports/2024/12/technology-use-at-school-and-students-learningoutcomes_4c4f92e6/422db044-en.pdf</u>, retrieved: 05, 2025

OECD (Organisation for Economic Co-operation and Development), "PISA 2025 Learning in the Digital World Framework (Second Draft)," 2023. Available from: https://www.oecd.org/en/topics/sub-issues/learning-in-thedigital-world/pisa-2025-learning-in-the-digital-world.html, retrieved: 05, 2025

M. Sáinz and J. Eccles, "Self-concept of computer and math ability: Gender implications across time and within ICT studies," J. Vocat. Behav., vol. 80, no. 2, pp. 486–499, Apr. 2012, doi: 10.1016/j.jvb.2011.08.005

M. Salanova and S. LLorens, "Exposure to Information and Communication Technology and its Relationship to Work Engagement," Cienc. Trab., vol. 11, pp. 55-62, no. 32, 2009.

S. R. Yoel and Y. J. Dori, "FIRST High-School Students and FIRST Graduates: STEM Exposure and Career Choices," IEEE Trans. Educ., vol. 65, no. 2, pp. 167–176, May 2022, doi: 10.1109/TE.2021.3104268.

Prof. Dr. Claudia Heß Beraterin, Coach & Professorin für Digitale Transformation

Prof. Dr. Sibylle Kunz Lernen mit Leidenschaft

THANK YOU

Prof. Dr. Claudia Hess, Prof. Dr. Sibylle Kunz IU International University of Applied Sciences

- claudia.hess@iu.org
- 🛪 sibylle.kunz@iu.org