
A Metalogic-Based
Approach to
Programming Education
ComputationWorld 2025 and DataSys 2025

April 10, 2025, Valencia, Spain
Hans-Werner Sehring

2

April 10,2025

Outline of the Talk

01 How to teach programming – concepts rather

than languages
02 Compiler technology, programming language

and language definitions

03 For describing programming language

semantics and syntax
04 Examples of teaching programming concepts

05 Summary and Outlook

Programming Education

Metalogics and M3L

Conclusion

Generalized Compilers

Education Examples

3

Hans-Werner Sehring

Model-Driven Software Engineering

Evolution-friendly software architecture

Software engineering education

Software Engineering

Domain Modeling

Software Modeling

M L³

Metamodellierung

Digital communication

Media-based knowledge representation

Personalization

Content Management

hans-werner.sehring@nordakademie.de
https://www.nordakademie.de/die-hochschule/team/hans-
werner-sehring

http://dr.sehring.name

https://orcid.org/0009-0008-3016-6868

https://www.researchgate.net/profile/Hans-Werner-Sehring

https://scholar.google.de/citations?user=hsSrVL8AAAAJ

https://www.linkedin.com/in/hwsehring/

Software Engineering

Contact

Professor for Software Engineering
Head of the Business Informatics / IT Management (M.Sc.) degree program

4
Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE April 10,2025

Programming
Education

01

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

5

April 10,2025

For instance,

2023 Developer Survey of Stack Overflow

[https://survey.stackoverflow.co/2023/]:

Universities play a central role (still) in

programming education – more influential

than on the job training

My current context: NORDAKADEMIE is

part of a dual training, meaning that

● Students are educated with a practical

focus

● Education is split between company

training and university lecturing

The Role of Programming in (CS) Education
Learning to program is a foundation of each CS curriculum.

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

6

April 10,2025

Programming Languages (PLs) are still central to computer science (CS)

Programming in general

After decades of (Java, in particular) mono culture, at least in the area of application development,

programming became polyglot again

Ever new trends change the developers’ language preferences, for example,

● Transition from object oriented PLs (OOPLs) to functional PLs (Java development direction, Android, iOS)

● Reactive programming with new demand for concurrent programming

Programming education

Typically, programming is taught using one or two PLs

For example, a scientifically appealing (functional, in many cases) one and

an industrially relevant one (Java, Python, JavaScript, or similar, depending on domain)

Programming Language Education
Programming is typically taught by the example of a programming language.

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

7

April 10,2025

2023 Developer Survey of Stack Overflow

[https://survey.stackoverflow.co/2023/]:

“Rust is the most admired language, more than 80% of

developers that use it want to use it again next year.”

Rust has some nice novel features.

Being targeted at systems programming, Rust will not be

most instructors’ first choice for beginners’ courses

Yet, it is increasingly being used in practice

Programmers’ Wishes are Different
Learning how to program is a foundation of each CS curriculum.

Rust “admired”

Java

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

8

April 10,2025

Rather than teaching languages, it becomes increasingly important (again) to teach programming concepts

Reasons for this opinion are manifold

● PLs are not that long-lived anymore (again)

● Polyglot development: companies choose PLs rather freely, approaches like Service developmentµ

● New forms of “programming” emerge (for instance, low code, generative AI)

that free developers from PLs, but not programming techniques

● Some of our students do not program as part of their professional education

But: programming skills are required in other areas as well: software architecture, process modeling, etc.

All in all, we should increasingly teach programming concepts instead of concrete programming languages

Programming Education
Changes in programming education might be due.

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

9

April 10,2025

Starting point often: programming paradigms

Though some are well formalized (functional, lambda calculus),

and others are not (OO, no common object calculus)

Programming paradigms give a first idea of a mapping of concepts to implementation techniques and PLs

Example: there are diverse interpretations of object orientation

● Prototype-based vs. class-based

● Class hierarchy with type definitions vs. Mixin (Traits)

● Stateful objects IntegerSum.new(a,b,c)

vs. conversational interfaces IntegerSum.setSummand(a).setSummand(b).setSummand(c).eval()

vs. functional interfaces a.add(b).add(c)

● Stateful objects vs. immutable objects

● etc.

Programming Paradigms
Students need an overview over programming concepts and their application

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

10

April 10,2025

To teach a range of programming concepts, many concrete PLs required

● Different concepts in different PLs

● Existing PLs not paradigm-pure: different interpretations of a paradigm, hybrid languages

Alternative: hypothetical languages for particular aspects of programming

Goal:

● Design own hypothetical languages to demonstrate concepts in “pure” form

● According to learning objectives

● Can be done with matured language technology (“yacc”); proposal: language design framework

Example: OO Java-ish (builtins) vs. Smalltalk-ish (Metaclasses)

class Person Person = ConcreteClass.instanceOf()

class Student extends Person Student = Person.subClassOf()

mary = new Student mary = Student.new

Hypothetical Languages for CS Education
Specifically designed languages better allow demonstrating programming concepts.

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

11

April 10,2025

Programming needs practice, both for concrete PLs and for abstract concepts

Additionally, one needs to understand modeling solutions with the different approaches

This needs time (per paradigm, …, concept, …)

Therefore new forms of learning

may be due:

● Flipped learning: use time to practice

and to discuss details

● Blended learning: use online resources

for learning PL syntax,

discuss implications in classroom

● Active learning: work with the material,

i.e., change it

Programming is Learned by Practicing
Programming cannot be taught in classroom teaching, it needs hands-on experience.

12
Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE April 10,2025

Generalized Compilers

02

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

13

April 10,2025

Compiler construction is a well-understood domain including tool support

Typical compiler architecture:

Compiler frontend:

● Source code is tokenized by scanner, producing token stream,

● Structures are recognized by parser, producing abstract syntax tree (AST),

● Semantic checks are performed by analyzer, resulting in decorated AST (links, type information, …)

Then code generation in backend

Building Compilers
Building hypothetical programming languages is easy given the existing language tools.

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

14

April 10,2025

Traditional Compilers vs. M3L Definitions

Compiler Construction

Language specification in formal or informal form

Scanner, parser, analyzer etc. implement
specification

Metalogic-based

Semantics of PL encoded in model, concepts and
semantic deduction

Syntax by syntactic deduction by using PL model
as a very rich attributed AST

Language design with the M3L starts model-driven with a semantically annotated AST.

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

15

April 10,2025

Generalized language tooling based on the idea of the “upside-down” compiler construction

● Design abstract language, including semantics, in the form of a “decorated” AST

● Derive concrete language by adding syntax

For instructors

● In particular for “small” hypothetical PLs used for programming education

● Generalized compiler: create languages from specification

Requires expressive decoration; new take on PL-defining “decorated” AST: metalogic

For students

● Interact with language specifications: to experience which features are essential, what breaks a PL, etc.

● On top of actual programming: design own languages or modify existing ones

Generalized Compiler
Generalized language tooling based on the idea of the “upside-down” compiler construction

16
Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE April 10,2025

Metalogic and M3L

03

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

17

April 10,2025

17

M3L at a Glance

A

A is a B

A is the B

A is a B { C }

A |= D

A |- E F G.

The declaration of or reference to a concept named A

The refinement of a concept B to a concept A;

A is a specialization of B, B is a generalization of A (the: A is the only specialization of B)

Containment of concepts;

C belongs to the content of A, A is the context of C

The semantic rule of a concept of a concept A;

whenever A is referenced, D is bound;

if D does not exist, it is created in the same context as A

The syntactic rule of a concept A;

A is printed out as or recognized from the concatenation of the syntactic forms of

concepts E, F, and G;

if not defined, a concept evaluates to / is recognized from its name

Basic language constructs. More complete descriptions can be found in the literature.

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

18

April 10,2025

18

M3L Concept Narrowing and Implicit Subconcepts

Person {
 Name is a String }

PersonMary is a Person {
 Mary is the Name }

PersonPeter is a Person {
 Peter is the Name
 42 is the Age }

Concepts are analyzed after creation to detect certain constellations

● Narrowing

If a concept A has a subconcept B, and if all concepts defined in the

context of B are equally defined in the context of A, then each

occurrence of A is narrowed down to B.

Example: Person { Peter is the Name

 42 is the Age } is narrowed to PersonPeter

● Implicit Subconcepts

If a concept A has the same set of base concepts as concept B, and if for

every content of A there is a matching content of B, then A is a derived

base concept of B.

Example: the base concept PersonMary is derived for

Person { Mary is the Name

 42 is the Age }

Refinement relationships are evaluated when accessing concepts.

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

19

April 10,2025

19

M3L Concept Evaluation

Person {
 Name is a String }

PersonMary is a Person {
 Mary is the Name }

PersonPeter is a Person {
 Peter is the Name
 42 is the Age }

The M3L has an operational semantics for concept evaluation

It is based on (any combinations of)

• Refinement, including implicit refinements

• Semantic rules

• Visibility rules

• All concepts in the content of a concept are also visible in the

content of refinements: A { B }, C is an A ⇒ C { B }

• All concepts in the content of a concept are also visible in the

contents of concepts in the context of that concept:

D E { F } ⇒ E { F { D } }

Concept definitions and semantic rules are used to capture concept semantics.

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

20

April 10,2025

20

M3L Concept Representation

Person {
 Name is a String
} |- Mr. Name .

PersonMary is a Person {
 Mary is the Name
} |- Mrs. Name .

PersonPeter is a Person {
 Peter is the Name
 42 is the Age }

M3L’s syntactic rules allow exporting concepts in an external form, and to

create / update concepts from such an external form

Such external forms are formal languages like programming languages

and files formats

Example:

The concept PersonMary is externalized as the String Mrs. Mary

● The concept Mrs. is created when needed

● Both concepts Mrs. and Mary have no syntactic rule attached

The input Mr. Smith leads to the concept

Person { Smith is the Name } to be created or updated

Syntactic rules are used to print out and to read in concepts.

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

21

April 10,2025

Programming Paradigms – Imperative PLs

Type system (any paradigm)

Type

Boolean is a Type

True is a Boolean

False is a Boolean

Integer is a Type {

 Succ is an Integer }

0 is an Integer

PositiveInteger

 is an Integer {

 Pred is an Integer }

1 is a PositiveInteger {

 0 is the Pred }

Imperative Basics

Statement

Expression

 is a Statement

Variable {

 Name

 Type }

Procedure {

 FormalParameter

 is a Variable

 Body is a Statement }

Some Statements

ConditionalStatement

 is a Statement {

 Condition is a Boolean

 ThenStatement

 is a Statement

 ElseStatement

 is a Statement }

Loop is a Statement {

 Body is a Statement }

HeadControlledLoop

 is a Loop {

 Condition is a Boolean }

Models of programming paradigms are a good starting point for models of programming.

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

22

April 10,2025

PL Semantics

The semantics of a statement

ConditionalStatement

 is a Statement

{

 Condition is a Boolean

 ThenStatement

 is a Statement

 ElseStatement

 is a Statement

}

Is given by definitions like

IfTrueStmt

 is a ConditionalStatement

{

 True is the Condition

} |= ThenStatement

IfFalseStmt

 is a ConditionalStatement

{

 False is the Condition

} |= ElseStatement

Can be used in “programs” like

MyConditional

 is a ConditionalStatement

{

 SomePredicate

 is the Condition

 Statement1

 is the ThenStatement

 Statement2

 is the ElseStatement

}

MyConditional will be a derived

subconcept of either IfTrueStmt

or IfFalseStmt

The semantics of the constructs is stated explicitly. There may be alternative realizations.

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

23

April 10,2025

Syntax rules provide a concrete syntax for programming languages, for example

For example, generic OO to Java:

Java is an ObjectOrientation {

 ConditionalStatement

 |- if (Condition)

 ThenStatement

 ElseStatement .

}

Typically, there is no direct mapping of general concepts to PLs

● Languages implement concepts differently. For example, Java misses some object-oriented features and

expresses them differently. Intermediate models bridge the gap between programming models in “pure form”

and concrete PLs

● Many languages are hybrid in nature, so that more than multiple programming model are combined

Concrete Programming Languages
Concrete programming languages are implemented by providing syntax rules.

Generic OO to Python:

Python is an ObjectOrientation {
 ConditionalStatement
 |- if Condition :
 " " ThenStatement
 else:
 " " ElseStatement .
}

24
Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE April 10,2025

Education Examples

04

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

25

April 10,2025

There are various examples of basic PL education that are hard to understand for beginners

● persistent data of functional PLs (and mutation will break many of them)

● mutable data of imperative PLs (and all associated problems)

● parameter passing by value, by reference, and by name

● scopes and contexts (scope in structured programming, objects, closures, etc.)

● the theory of OO type systems (subtyping, inheritance, variance, Null singleton, Void singleton, etc.)

● everything related to concurrent programming

Often, few of them are covered in sufficient detail (depending on the teaching approach), while others are

touched remotely

So far, we use dedicated PLs to discuss some features

Experiments to demonstrate them using the M3L are currently on the level of logic, not suitable for students

PL Education
Certain properties of programming languages are central to understanding programming.

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

26

April 10,2025

Example 1: persistent data in functional programming

Assuming a base definition of programming concepts in a context FunctionalProgramming, the following

might be asked

Example 1: Understanding Functional Programming
Students need to understand why functional programming uses immutable data.

> MyFunProg is a FunctionalProgramming { i is an Identifier }
MyFunProg
> MyFunProg { iDecl1 is a Declaration { i is the DeclaredIdentifier
 1 is the Value } }
MyFunProg
> MyFunProg { iDecl1 is a Declaration { i is the DeclaredIdentifier
 2 is the Value } }
Error: "i" has been defined to be the only base concept of "1"; cannot
assign further base concepts

M3L error message not helpful;
should report something like:
“identifier i already defined with value 1, cannot be assigned another value”

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

27

April 10,2025

Example 2: variable scopes in imperative programming

Assuming a base definition of programming concepts in a context ImperativeProgramming, the following

might be asked

Example 2: Understanding Imperative Programming
Students need to understand scopes to master imperative programming.

> MyImpProg is an ImperativeProgramming {
 i is a Variable { Integer is the Type }
 1 is the i
 MainProgram is a Procedure {
 i is a Variable { Integer is the Type }
 2 is the i
 } is the MainProcedure
}
MyImpProg
> i from MyImpProg
1
> i from MainProgram from MyImpProg
2

28
Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE April 10,2025

Conclusion

05

Keynote on Programming Language Education – Hans-Werner Sehring – NORDAKADEMIE

29

April 10,2025

Summary

They way programs are constructed changes in some areas

Yet, a proper education in basic programming techniques is required

To account for the various aspects of programming, either a lot of PLs and other tools have to be used in

teaching, or a universal

The latter is one possible research objective

Outlook

A first step will be identifying minimal versions of actual PLs or hypothetical PLs that exhibit the features to be

taught

The potential of the environment that the M3L provides shall be researched

Only with concrete PLs it will be possible to provider better error messages (in terms of the chosen PLs) etc.

Conclusion
Summary and Outlook

NORDAKADEMIE gAG Hochschule der Wirtschaft

Köllner Chaussee 11 · 25337 Elmshorn · Tel.: +49 (0) 4121 4090-0 · E-Mail: info@nordakademie.de · Web: www.nordakademie.de

	page5
	Agenda
	Hans-Werner Sehring (2)
	Titel des Kapitels
	Folie 5
	Folie 6
	Folie 7
	Folie 8
	Folie 9
	Folie 10
	Folie 11
	page8
	Folie 13
	Folie 14
	Folie 15
	page10
	4. A Brief Introduction to the M³L
	M³L Expression Evaluation
	Folie 19
	Folie 20
	Folie 21
	Folie 22
	Folie 23
	page11
	Folie 25
	Folie 26
	Folie 27
	Folie 28
	page4
	Folie 30

