
Secure Software
Development for the Cloud

Aspen Olmsted, Ph.D.

Associate Professor

About Me

• Associate Professor in School of Computing and
Science – Wentworth Institute of Technology

• 30+ years in the Software Industry – Sold software
company to publicly traded company in 2005

• Expert Witness

• Created nearly a dozen technical programs for
universities such as New York University, College
of Charleston, Simmons University, Fisher College

• Created over 41 edx and Coursera courses

• Author of two technical books

1

Recent Book On Topic

2

• Software Security

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

3

Agenda

Software Security

• Set of development practices that protect:

• Software itself

• The data processed by the software

• The network communications

• Not just Malicious Users

4

• Security

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

5

Agenda

• There are many SDLCs used to develop software

• We will think about four SDLCs
• Waterfall

• Agile

• DevOps

• Microsoft Security Development Lifecycle

6

Software Development Lifecycles

• Well Defined Steps

• Problems may not be discovered until late in the process

• Finished Product

7

Waterfall

• No concept of finished product

• One model uses Scrum

• Work put into sprints

8

Agile

• Incremental updates

• Automation of phases

9

DevOps

• Security Steps Added to Phases

• Training and Response

10

Microsoft Security Development Lifecycle

Our Methodology

• More Security Modeling in Distinct Phases

• Closer to the Code

• No Beginning and End – Each new feature/bug fix considers earlier
models

• Automated Code Injection for Mitigation

11

Our Methodology

12

Phase Security Models/Tools

Functional Model Non-Functional Requirements/Misuse
Scenarios/Cases

Object Model OCL Constraints/Stereo Types

System Model OCL Constraints/Stereo Types

Threat Model STRIDE/DREAD/PERT Models

Implementation Training on Know Web Security

Verification Unit/Integration/System Tests

Penetration Testing Automated System Scans

• Security

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

13

Agenda

Functional Model

• A model is a simplification

• Output is
• Functional Requirements
• Non-Functional Requirements
• Constraints

• Tools
• List
• Textual Scenarios
• Textual Use-Cases
• Graphical Use-Cases

14

• Textual Mis-Scenarios
• Textual Misuse Cases
• Graphical MisUse-Cases

Example Requirements for Event Ticketing Application

15

Functional Requirements Non-Functional Requirements Constraints

Must allow self service purchases Must support 50,000 concurrent
users

Patron should be able to use an
Android phone

Must allow basket of multiple
events

Must send e-tickets within 5
minutes of transaction completion

E-tickets must be in pdf format

Venue should be able to control
maximum number of tickets per
event

Return users must authenticate to
reuse previous payment type

Venue should be able to control
available payment types

Example Misuse Scenario

• Henrietta the Hacker creates several new emails to allow her to purchase more than the allowed tickets.
Between each order she uses the browser incognito feature to not have any cookies from previous
transaction

16

Misuse Cases

• Use and misuse cases are used to validate
understanding

• Multiple scenarios are rolled up into generic
textual use case and graphical use case models

• Multiple misuse scenarios are rolled up into
generic textual misuse case and graphical misuse
case models

17

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

18

Agenda

Object Model

• Output is
• Object Design

• OCL Constraints

• Tools
• UML Class Diagrams

• OCL Constraints

19

UML Class Diagrams

20

Represents the internal structure of an
application

Object Constraint Language (OCL)

Examples

Constraint OCL Equivalent

The age of a person is not negative. context Person inv: self.age >=0

A person is younger than its parents.
context Person inv: self.parents-
>forAll(p|p.age>self.age)

After a birthday, a person becomes one year older.
context Person::hasBirthday() post:
self.age=self.age@pre+1

A Person has 2 parents at max. context Person inv: self.parents->size()<=2

After somebody has a child, his/her child-set is not
empty, and it is larger than before.

context Person::getsChild() post: self.childs-
>notEmpty() and self.childs->size() > self.childs@pre-
>size()

Only an adult can be owner of a car.
context Person inv: self.age<18 implies self.cars-
>isEmpty()

The first registration of a car can not be before it is
built.

context Auto inv:
self.registration>=self.constructionYear

Every Person that has a car has at least one car which
is younger than the Person.

context Person inv: self.cars-
>notEmpty() implies self.cars->exists(c
| Calendar.YEAR - c.constructionYear < self.age)

Nobody can be his/her own parent. context Person inv: self.parents->excludes(self)

There's at least one Person which owns a car.
context Person inv: Person.allInstances()->exists(p |
p.cars->size() > 0)

21

• Rule-based Language to Specify Correctness

Stereotypes

• Add meaning to UML entities and attributes

22

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

23

Agenda

Dynamic Model

• Output is
• Expanded Methods Understanding

• OCL Constraints

• Tools
• UML Communication Diagrams

• UML State Diagrams

• UML Sequence Diagrams

• OCL Constraints

24

Dynamic Models

• Sequence or Communication

• Can use Stereotypes on Classes, Lifelines, Messages

• OCL Pre and Post Conditions on Messages

25

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

26

Agenda

System Model

• Output is
• System Partitions
• Patterns
• OCL Constraints
• Stereotypes
• Actions
• Components

• Tools
• UML Sequence Diagrams
• UML Activity Diagrams
• UML Component Diagrams
• UML Deployment Diagrams
• OCL Constraints

27

System Models

• Sequence or Activity

• Can use Stereotypes on Classes, Lifelines, Messages &

 Control Flow

• OCL Pre and Post Conditions on Messages &

 Control Flow

28

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

29

Agenda

Stride Model Threat Breakdown.
Threat Desired Property

Spoofing Authenticity

Tampering Integrity

Repudiation Non-repudiability

Information disclosure Confidentiality

Denial of Service Availability

Elevation of Privilege Authorization

The STRIDE model is an approach to threat modeling to
identify potential vulnerabilities and threats

Example Stride Model

Function S T R I D E

Login X X X X X X

Event Selection X

Seat Selection X X

Payment X X X X

Print at Home X X X

Other Models

• DREAD – Similar to STRIDE but uses quantitative value

• Damage: Understand the potential damage a particular threat is capable of causing.

• Reproducibility: Identify how easy it is to replicate an attack.

• Exploitability: Analyze the system’s vulnerabilities to ascertain susceptibility to cyberattacks.

• Affected Users: Calculate how many users would be affected by a cyberattack.

• Discoverability: Determine how easy it is to discover vulnerable points in the system infrastructure.

• PERTD – Distributed System Model

• Partition – Vulnerable to network partition failure

• Execution – Vulnerable to execution failure

• Requisite – Vulnerable to previous action failure

• Time – Vulnerable to execution timing

• Data – Vulnerabilities in Data Sources

32

Daily ETL Upload from On-Premises to Cloud

33

Daily ETL Download from Cloud to On-Premises

34

Figure 2 - Download Activity

STRIDE Model of Daily ETL Upload from On-Premises to Cloud

35

STRIDE Model of Daily ETL Download from Cloud to On-Premises

36

PERTD Model of Daily ETL Upload from On-Premises to Cloud

37

PERTD Model of Daily ETL Download from Cloud to On-Premises

38

BIRFS – Threat Modeling for Systems that utilize AI/ML Algorithms

• B- potential biases in output

• I - input is outside the domain of control.

• R - output result does not deviate from a reasonable range

• F - forensics or logging to defend results

• S - Sensitive or private data needs to be protected

39

CRIRTA – Threat Modeling for Systems for Database Systems

• C - Column Confidentiality

• R - Row Confidentiality

• I - Column Inference

• R - Relationship Correctness

• T - Table Correctness

• A - Availability

40

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

41

Agenda

Mitigation Strategies

• Some standard mitigation strategies

• Logging

• Redundancy

• Authentication

• Authorization

• Database Security

• Standard Web Security

• Buffer Overflows

• Can be added as stereotypes in earlier models

• Could be generated from XMI or a similar version of model

42

PERTD Mitigation Strategies

• PERTD – Distributed System Model

• Partition – Vulnerable to network partition failure – Snapshots, Freshness prioritization

• Execution – Vulnerable to execution failure - Snapshots , Freshness prioritization

• Requisite – Vulnerable to previous action failure - Snapshots , Freshness prioritization

• Time – Vulnerable to execution timing - Snapshots , Freshness prioritization

• Data – Vulnerabilities in Data Sources – Multisource JSON Schema Validation Stage

43

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

44

Agenda

Implementation

• Train on standard web vulnerabilities

• OWASP TOP 10

• SQL Injection

• Command Injection

• XSS

• Request Forgery

45

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

46

Agenda

Test Types

• Unit Tests – Test classes, methods

• Integration Tests – Test subsystems with Mocks and Stubbs

• Regression Tests – Test non-functional requirements

• System Tests - Test functional requirements

47

Testing PERTD

• Regression Tests – Test non-functional requirements

• PERTD – Distributed System Model

• Partition – Vulnerable to network partition failure – Isolate hosts during execution

• Execution – Vulnerable to execution failure – Pollute execution to force failure

• Requisite – Vulnerable to previous action failure – Pollute requisite test

• Time – Vulnerable to execution timing – Pollute to slow execution

• Data – Vulnerabilities in Data Sources – Inject dirty records in some systems

48

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing

• Penetration Testing

49

Agenda

Penetration Testing

• Should be performed by separate team from developers

• Output – Report

• Tools

• Open-source intelligence

• Nikita – Open-Source scanner for known vulnerabilities

• Vega – Open-Source web scanner that can run as proxy or scanner

50

Questions?

51

	Slide 0: Secure Software Development for the Cloud
	Slide 1: About Me
	Slide 2: Recent Book On Topic
	Slide 3: Agenda
	Slide 4: Software Security
	Slide 5: Agenda
	Slide 6: Software Development Lifecycles
	Slide 7: Waterfall
	Slide 8: Agile
	Slide 9: DevOps
	Slide 10: Microsoft Security Development Lifecycle
	Slide 11: Our Methodology
	Slide 12: Our Methodology
	Slide 13: Agenda
	Slide 14: Functional Model
	Slide 15: Example Requirements for Event Ticketing Application
	Slide 16: Example Misuse Scenario
	Slide 17: Misuse Cases
	Slide 18: Agenda
	Slide 19: Object Model
	Slide 20: UML Class Diagrams
	Slide 21: Object Constraint Language (OCL)
	Slide 22: Stereotypes
	Slide 23: Agenda
	Slide 24: Dynamic Model
	Slide 25: Dynamic Models
	Slide 26: Agenda
	Slide 27: System Model
	Slide 28: System Models
	Slide 29: Agenda
	Slide 30: Stride Model Threat Breakdown.
	Slide 31: Example Stride Model
	Slide 32: Other Models
	Slide 33: Daily ETL Upload from On-Premises to Cloud
	Slide 34: Daily ETL Download from Cloud to On-Premises
	Slide 35: STRIDE Model of Daily ETL Upload from On-Premises to Cloud
	Slide 36: STRIDE Model of Daily ETL Download from Cloud to On-Premises
	Slide 37: PERTD Model of Daily ETL Upload from On-Premises to Cloud
	Slide 38: PERTD Model of Daily ETL Download from Cloud to On-Premises
	Slide 39: BIRFS – Threat Modeling for Systems that utilize AI/ML Algorithms
	Slide 40: CRIRTA – Threat Modeling for Systems for Database Systems
	Slide 41: Agenda
	Slide 42: Mitigation Strategies
	Slide 43: PERTD Mitigation Strategies
	Slide 44: Agenda
	Slide 45: Implementation
	Slide 46: Agenda
	Slide 47: Test Types
	Slide 48: Testing PERTD
	Slide 49: Agenda
	Slide 50: Penetration Testing
	Slide 51: Questions?

