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About Me

• Associate Professor in School of Computing and 
Science – Wentworth Institute of Technology

• 30+ years in the Software Industry – Sold software 
company to publicly traded company in 2005

• Expert Witness

• Created nearly a dozen technical programs for 
universities such as New York University, College 
of Charleston, Simmons University, Fisher College

• Created over 41 edx and Coursera courses

• Author of two technical books
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Recent Book On Topic
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• Software Security

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing 

• Penetration Testing
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Software Security

• Set of development practices that protect:

• Software itself

• The data processed by the software

• The network communications

• Not just Malicious Users
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• Security

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing 

• Penetration Testing
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• There are many SDLCs used to develop software

• We will think about four SDLCs
• Waterfall 

• Agile

• DevOps

• Microsoft Security Development Lifecycle

6

Software Development Lifecycles



• Well Defined Steps

• Problems may not be discovered until late in the process

• Finished Product
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Waterfall



• No concept of finished product

• One model uses Scrum 

• Work put into sprints
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Agile



• Incremental updates

• Automation of phases
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DevOps



• Security Steps Added to Phases

• Training and Response

10

Microsoft Security Development Lifecycle



Our Methodology

• More Security Modeling in Distinct Phases

• Closer to the Code

• No Beginning and End – Each new feature/bug fix considers earlier 
models

• Automated Code Injection for Mitigation
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Our Methodology
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Phase Security Models/Tools

Functional Model Non-Functional Requirements/Misuse 
Scenarios/Cases

Object Model OCL Constraints/Stereo Types

System Model OCL Constraints/Stereo Types

Threat Model STRIDE/DREAD/PERT Models

Implementation Training on Know Web Security

Verification Unit/Integration/System Tests

Penetration Testing Automated System Scans



• Security

• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing 

• Penetration Testing
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Functional Model

• A model is a simplification

• Output is
• Functional Requirements
• Non-Functional Requirements
• Constraints

• Tools
• List
• Textual Scenarios
• Textual Use-Cases
• Graphical Use-Cases
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• Textual Mis-Scenarios
• Textual Misuse Cases
• Graphical MisUse-Cases



Example Requirements for Event Ticketing Application
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Functional Requirements Non-Functional Requirements Constraints

Must allow self service purchases Must support 50,000 concurrent 
users

Patron should be able to use an 
Android phone

Must allow basket of multiple 
events

Must send e-tickets within 5 
minutes of transaction completion

E-tickets must be in pdf format

Venue should be able to control 
maximum number of tickets per 
event

Return users must authenticate to 
reuse previous payment type

Venue should be able to control 
available payment types



Example Misuse Scenario

• Henrietta the Hacker creates several new emails to allow her to purchase more than the allowed tickets.  
Between each order she uses the browser incognito feature to not have any cookies from previous 
transaction 
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Misuse Cases

• Use and misuse cases are used to validate 
understanding

• Multiple scenarios are rolled up into generic 
textual use case and graphical use case models

• Multiple misuse scenarios are rolled up into 
generic textual misuse case and graphical misuse 
case models
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• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing 

• Penetration Testing
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Object Model

• Output is
• Object Design

• OCL Constraints

• Tools
• UML Class Diagrams

• OCL Constraints
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UML Class Diagrams
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Represents the internal structure of an 
application



Object Constraint Language (OCL)

Examples

Constraint OCL Equivalent

The age of a person is not negative. context Person inv: self.age >=0

A person is younger than its parents.
context Person inv: self.parents-
>forAll(p|p.age>self.age)

After a birthday, a person becomes one year older.
context Person::hasBirthday() post: 
self.age=self.age@pre+1

A Person has 2 parents at max. context Person inv: self.parents->size()<=2

After somebody has a child, his/her child-set is not 
empty, and it is larger than before.

context Person::getsChild() post: self.childs-
>notEmpty() and self.childs->size() > self.childs@pre-
>size()

Only an adult can be owner of a car.
context Person inv: self.age<18 implies self.cars-
>isEmpty()

The first registration of a car can not be before it is 
built.

context Auto inv: 
self.registration>=self.constructionYear

Every Person that has a car has at least one car which 
is younger than the Person.

context Person inv: self.cars-
>notEmpty() implies self.cars->exists( c 
| Calendar.YEAR - c.constructionYear < self.age)

Nobody can be his/her own parent. context Person inv: self.parents->excludes(self)

There's at least one Person which owns a car.
context Person inv: Person.allInstances()->exists(p | 
p.cars->size() > 0)
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• Rule-based Language to Specify Correctness



Stereotypes

• Add meaning to UML entities and attributes
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• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing 

• Penetration Testing
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Dynamic Model

• Output is
• Expanded Methods Understanding

• OCL Constraints

• Tools
• UML Communication Diagrams

• UML State Diagrams

• UML Sequence Diagrams

• OCL Constraints

24



Dynamic  Models

• Sequence or Communication

• Can use Stereotypes on Classes, Lifelines, Messages

• OCL Pre and Post Conditions on Messages
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• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing 

• Penetration Testing
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System Model

• Output is
• System Partitions
• Patterns
• OCL Constraints
• Stereotypes
• Actions
• Components

• Tools
• UML Sequence Diagrams
• UML Activity Diagrams
• UML Component Diagrams
• UML Deployment Diagrams
• OCL Constraints
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System Models

• Sequence or Activity

• Can use Stereotypes on Classes, Lifelines, Messages & 

 Control Flow

• OCL Pre and Post Conditions on Messages & 

 Control Flow
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• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing 

• Penetration Testing

29

Agenda



Stride Model Threat Breakdown.
Threat Desired Property

Spoofing Authenticity

Tampering Integrity

Repudiation Non-repudiability

Information disclosure Confidentiality

Denial of Service Availability

Elevation of Privilege Authorization

The STRIDE model is an approach to threat modeling to 
identify potential vulnerabilities and threats 



Example Stride Model

Function S T R I D E

Login X X X X X X

Event Selection X

Seat Selection X X

Payment X X X X

Print at Home X X X



Other Models

• DREAD – Similar to STRIDE but uses quantitative value

• Damage: Understand the potential damage a particular threat is capable of causing.

• Reproducibility: Identify how easy it is to replicate an attack.

• Exploitability: Analyze the system’s vulnerabilities to ascertain susceptibility to cyberattacks.

• Affected Users: Calculate how many users would be affected by a cyberattack.

• Discoverability: Determine how easy it is to discover vulnerable points in the system infrastructure.

• PERTD – Distributed System Model

• Partition – Vulnerable to network partition failure

• Execution – Vulnerable to execution failure

• Requisite – Vulnerable to previous action failure

• Time – Vulnerable to execution timing

• Data – Vulnerabilities in Data Sources
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Daily ETL Upload from On-Premises to Cloud

33



Daily ETL Download from Cloud to On-Premises
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Figure 2 - Download Activity



STRIDE Model of Daily ETL Upload from On-Premises to Cloud
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STRIDE Model of Daily ETL Download from Cloud to On-Premises
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PERTD Model of Daily ETL Upload from On-Premises to Cloud
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PERTD Model of Daily ETL Download from Cloud to On-Premises
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BIRFS – Threat Modeling for Systems that utilize AI/ML Algorithms

• B- potential biases in output

• I - input is outside the domain of control.

• R - output result does not deviate from a reasonable range

• F - forensics or logging to defend results

• S - Sensitive or private data needs to be protected
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CRIRTA – Threat Modeling for Systems for Database Systems

• C - Column Confidentiality

• R - Row Confidentiality

• I - Column Inference

• R - Relationship Correctness

• T - Table Correctness

• A - Availability
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• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing 

• Penetration Testing
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Mitigation Strategies

• Some standard mitigation strategies

• Logging

• Redundancy

• Authentication

• Authorization

• Database Security

• Standard Web Security

• Buffer Overflows

• Can be added as stereotypes in earlier models

• Could be generated from XMI or a similar version of model

42



PERTD Mitigation Strategies

• PERTD – Distributed System Model

• Partition – Vulnerable to network partition failure – Snapshots, Freshness prioritization

• Execution – Vulnerable to execution failure - Snapshots , Freshness prioritization

• Requisite – Vulnerable to previous action failure - Snapshots , Freshness prioritization

• Time – Vulnerable to execution timing - Snapshots , Freshness prioritization

• Data – Vulnerabilities in Data Sources – Multisource JSON Schema Validation Stage
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• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing 

• Penetration Testing
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Implementation

• Train on standard web vulnerabilities

• OWASP TOP 10

• SQL Injection

• Command Injection

• XSS

• Request Forgery
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• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing 

• Penetration Testing
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Test Types

• Unit Tests – Test classes, methods

• Integration Tests – Test subsystems with Mocks and Stubbs

• Regression Tests – Test non-functional requirements

• System Tests - Test functional requirements
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Testing PERTD

• Regression Tests – Test non-functional requirements

• PERTD – Distributed System Model

• Partition – Vulnerable to network partition failure – Isolate hosts during execution

• Execution – Vulnerable to execution failure – Pollute execution to force failure

• Requisite – Vulnerable to previous action failure – Pollute requisite test

• Time – Vulnerable to execution timing – Pollute to slow execution

• Data – Vulnerabilities in Data Sources – Inject dirty records in some systems
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• Software Development Lifecycles

• Functional Model

• Object Model

• Dynamic Model

• System Model

• Threat Model

• Risk Mitigation

• Implementation

• Testing 

• Penetration Testing
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Penetration Testing

• Should be performed by separate team from developers

• Output – Report

• Tools

• Open-source intelligence

• Nikita – Open-Source scanner for known vulnerabilities

• Vega – Open-Source web scanner that can run as proxy or scanner
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Questions?
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