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Introduction and Motivation 

[1] A. Petralia, P. Charpentier, P. Boniol, and T. Palpanas, “Appliance Detection Using Very Low-Frequency Smart Meter Time Series,” en, in Proceedings of the 14th ACM International 
Conference on Future Energy Systems, arXiv:2305.10352 [cs, eess], Jun. 2023, pp. 214–225. DOI: 10 . 1145 / 3575813 . 3595198.
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● Smart meters now provide continuous energy consumption data; however, 
their low temporal resolution complicates the identification of individual 
energy uses. [1] 

● Accurate estimation of heating and cooling consumption is essential for 
optimizing building performance and reducing operational costs.

● Disaggregating aggregated energy data has several advantages:
 - it enables targeted energy efficiency measures
 - it improves overall energy management strategies. 



HVAC Energy Consumption 
& Smart Meters
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● HVAC systems represent a significant proportion of 
building energy consumption, ranging from 38% to 
60% in many regions.

● Smart meters typically record aggregated energy 
consumption at low frequencies, which limits the 
direct detection of individual appliances or systems.

● Conventional disaggregation methods often disregard 
influential explanatory variables such as weather 
conditions and occupancy patterns.

● Incorporating environmental variables is crucial for 
developing robust models that accurately reflect the 
dynamics of energy consumption.

Final energy consumption in households EU, 2022 (%)
Source: Eurostat (nrg_d_hhq) 

https://ec.europa.eu/eurostat/databrowser/view/nrg_d_hhq/default/table?lang=en


Objectives
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● The total building energy consumption comprises heating, cooling, and other 
non-temperature-dependent uses. When electricity is the only energy source, 
and without sub-meters, all usages are aggregated.

● The primary objective is to decompose aggregated energy data into its 
constituent components using advanced statistical techniques to improve 
current approaches.

● The study employs Degree-Days (DD) metrics and Maximum a Posteriori 
(MAP) estimation to enhance the accuracy of disaggregated energy estimates.

● This method ensures that the sum of estimated components is equivalent to 
the total measured energy, adhering to the principle of energy conservation.



Thermosensitivity 
Consumption Model 

[1] J. A. Azevedo, L. Chapman, and C. L. Muller, “Critique and suggested modifications of the degree days methodology to enable long-term electricity consumption 
assessments: A case study in Birmingham, UK,” en, Meteorological Applications, vol. 22, no. 4, pp. 789–796, 2015, ISSN: 1469-8080. DOI: 10.1002/met.1525.
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● The model decomposes total energy consumption into 
heating, cooling, and other energy uses. The other uses do 
not depend on the weather, and are usually referred as the 
baseline consumption.

● Degree-Days (DD) quantify energy demand based on 
deviations from defined baseline temperatures. HDD stand 
for Heating DD and CDD stand for Cooling DD. [1]

● Linear relationships between Degree-Days and energy 
consumption are established, with additional random 
variables accounting for unobserved deviations noted ϵ  Mean weekly temperature (°C)

Illustration of the Thermosensitivity Model
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MAP Estimation Methodology
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● The objective of the estimation is to affect the deviation from the linear 
thermosensitivity model to the components.

● MAP estimation integrates prior information with observed data to refine the 
disaggregation of energy components.

● The method allocates the residual deviation between the linear model and the 
measured energy consumption into heating (or cooling) and non-HVAC uses.

● This approach formulates the estimation problem as an optimization that maximizes 
the joint probability of the observed residuals.

● Compared to conventional methods, MAP estimation reduces the standard error and 
ensures that the sum of component estimates equals the total energy measured.



Illustration of the MAP estimation
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● Let’s try to guess the values of two dices. With no 
more information, with uniform probabilities, both 
dice can have a value from 1 to 6. This is the a Priori 
estimation. 

● Now if we are told the value of the sum of the dice, 
let’s say 8. Only the following combinations can be 
expected: {2,6}, {3,5}, and {4,4}. We reduced the 
possibility space by six! Hence improving the 
accuracy of the estimation. This is the a Posteriori 
estimation.

● MAP estimation uses the joint distribution and the 
Bayes law to improve the estimation’s accuracy

Dice 
values 1 2 3 4 5 6

1 2 3 4 5 6 7

2 3 4 5 6 7 8

3 4 5 6 7 8 9

4 5 6 7 8 9 10

5 6 7 8 9 10 11

6 7 8 9 10 11 12

Table of all possible combinations for the sum of two dices



Estimation of Residuals 
Correlation

[2] AECOM Building Engineering, Energy Demand Research Project: Early Smart Meter Trials, 2007-2010. [data collection]. UK Data Service. SN: 7591, 2014. 
DOI: http://doi.org/10.5255/UKDA-SN-7591-1
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● The model introduces random deviations (ϵh, ϵc, ϵo) to 
capture variability not explained by the linear 
relationships with Degree-Days.

● An analysis of the EDRP dataset[2], comprising over 8,000 households, was 
conducted to estimate the correlation coefficient (ρh) between heating and other 
energy deviations. 

● The statistical analysis yielded a median correlation value of approximately 0.17, 
indicating a weak positive association. 

● Precise estimation of ρh is critical to the MAP framework, as it directly influences 
the accuracy of the disaggregation process.



Case Study: Application on a Real Building
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● A case study was performed on a residential 
building near Lyon, France, using data collected 
from a Linky smart meter and outdoor temperature 
records via the OpenWeatherMap API.

● Key parameter estimates obtained include an 
Ebaseline of 69 kWh, σo of 8.9 kWh, αh of 1.8 
kWh/°C·week, and σh of 73 kWh.

● The MAP estimation reveals as expected that the 
estimated heating energy (Êh) increases during 
winter months, while the non-HVAC energy (Êo) 
remains relatively stable throughout the year.



Discussion of Method & 
Comparisons

©
 E

co
 C

O
2

12

● The MAP estimation method offers improved standard error estimates relative 
to traditional Maximum Likelihood Estimation (MLE) methods.

● This approach conserves the total energy balance by ensuring that the sum of 
the disaggregated heating, cooling, and other components equals the 
measured total energy.

● Limitations include the sensitivity to the estimated correlation coefficients (ρh 
and ρc) and the omission of additional explanatory variables such as occupancy 
and electricity pricing.

● The model requires further validation with comprehensive, labeled datasets to 
assess its performance across varied building types and conditions.



Conclusions and future work
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👉The proposed model successfully 
decomposes energy data into 
heating, cooling, and non-
temperature-dependent 
components, enhancing the 
precision of building energy 
management.

👉This study presents a novel 
disaggregation method that 
integrates Degree-Days metrics 
with MAP estimation to 
accurately partition HVAC energy 
consumption from total energy 
usage.

👉Future work will focus on 
validating the model using 
labeled datasets, incorporating 
additional factors (e.g., 
occupancy and dynamic pricing), 
and extending the methodology 
to improve cooling energy 
disaggregation.

👉The findings contribute to 
the advancement of 
energy efficiency practices 
and support the 
development of 
sustainable energy 
management solutions.



www.ecoco2.comwww.ecoco2.com

Antoine tavant
antoine.tavant@m4x.org

https://www.ecoco2.com/

	Diapo1
	Diapo 2
	Diapo 3
	Context
	Diapo 5
	Diapo 6
	Diapo 7
	Diapo 8
	Diapo 9
	Diapo 10
	Diapo 11
	Diapo 12
	Conclusions and future work
	Diapo 14

