

GEOProcessing 2025

Presenter: Dr. Mohamed El-Darieby

A Workflow for Map Creation in Autonomous Vehicle Simulations Zubair Islam, Ahmaad Ansari, George Daoud, Mohamed El-Darieby

Dr. Mohamed El-Darieby

- Associate Professor & Chair

 - Email: mohamed.el-darieby@ontariotechu.ca
- Research Interest:
 - Deep Learning for Autonomous Systems. \bullet
 - Vehicular Data
 - Intelligent Transportation Systems \bullet

Electrical, Computer & Software Engineering at Ontario Tech University, Canada

Mohamed El-Darieby Ontario Tech University, Canada

Impact and Importance

- AV Software Stack
 - Perception
 - Localization
 - Prediction of travel trajectory and planning \bullet future movement
- AV Development
 - Need to create tailored simulated environments
 - Safety Assurance
 - Millions (if not more) of testing scenarios
 - Simulation/software in the loop.
 - Hardware/vehicle in the loop

[3] Scenario-based testing architecture for automated driving systems.

3

HD Maps & AV

- Requirements
 - Essential
 - Accuracy
 - Centimeter-level
 - Reality
 - Flexibility in supporting driving scenarios
- Roads
 - Layouts \bullet
 - Lane markings
 - Traffic infrastructure
- Road agents
 - Other cars,
 - Pedestrians, ...etc

Functional	 non-formal, human readable behavior-based description of a traffic scenario possibly containing a visualization
Abstract	 formalized, machine readable, and declarative description (i.e. constraints on the happenings) closely tied to an ontology (or rather family of ontologies) efficient description of relations (e.g. cause-effect).
Logical	 parameterized representation of a set of scenarios, where influencing factors are described by means of parameter ranges and distributions enables parameter variation
Concrete	 a single scenario, describing exactly one specific scenery and chain of events with fixed parameters can, for example, be written as OpenDRIVE + OpenSCENARIC

[4] Key terms in OpenSCENARIO DSL for AV simulation.

Related Work

- Simulators
 - (e.g., AWSIM, CARLA, LGSVL)

 - Offered only a single simulation map, which represented a large city environment. • Documentation/Instruction given for manually creating custom environments
- Works with Complex Simulation Setup
 - Feng (2020): converts OSM data into simulation-ready maps for CARLA and LGSVL • Santonato (2020): Focused on CARLA; limited in compatibility with other simulators • Jeong (2022): HD map generation using LiDAR/GNSS data; scalability issues
- Works Requiring Expensive Real-World Data and AI Development • Li (2022): A deep learning-based method for HD map generation, offering high
- accuracy

5

Contribution

- A Workflow That:
 - Simplifies & streamlines the process of generating simulation-ready maps.
 - Creates environments as close to real-world as possible
 - Adaptable to any location available on OpenStreetMap (OSM)
 - Enables more realistic testing environments.
 - Uses open-source tools and minimal computational resources
- Enables Integration with AV Simulation Platforms:
 - With AWSIM: Generate a Lanelet2 OSM map and 3D mesh
 - With Autoware Integration: Produce Lanelet2 map and point cloud

3D Map Creation Workflow

Workflow is available on Github [5]

7

OSM File to 3D Mesh

Picking a location in **OpenStreetMap [6] Exported as:** OSM File

OSM2World Viewer
<u>V</u> iew <u>C</u> amera <u>O</u> ptions <u>H</u> elp

Docker Container: OSM file converted into a 3D mesh in **OSM2World** [7] **Exported as:** 3D map files (OBJ, MTL, PNG)

Point Cloud Generation

Docker Container: 3D mesh loaded into CloudCompare [8]

Docker Container: 3D Mesh Converted into Point Cloud *Exported as:* Point Cloud Data File

Point Cloud Processing

Docker Container: Point Cloud loaded into Point Cloud Library (PCL) [9] with Docker Container: Point Cloud after further processing using PCL, resulting in a frontal view a top-down aerial view **Exported as:** Point Cloud Data File

Lanelet2 OSM File Creation

Point Cloud loaded into Vector Map Builder [10]

Manually creating lanelets and parking spaces *Exported as:* Lanelet2 OSM File

Latitude/Longitude Nullifier Script

6

8

9

12

• This script [11] removes latitude and longitude fields from the Lanelet2 OSM file to prevent map issues in Autoware and AWSIM, ensuring the lanes don't extend beyond the map boundaries.

<pre>import xml.etree.ElementTree as ET</pre>
<pre>def update_lat_lon_to_empty(node): # Set lat and lon attributes to empty strings node.set("lat", "") node.set("lon", "")</pre>
<pre>def update_lat_lon_in_file(input_file, output_file): # Parse the XML file tree = ET.parse(input_file) root = tree.getroot()</pre>
<pre># Iterate over all elements and update lat and lon if both attributes are present for elem in root.iter(): if 'lat' in elem.attrib and 'lon' in elem.attrib: update_lat_lon_to_empty(elem) # Save the modified XML to the output file tree_write(output file</pre>
<pre>def main(): # Check if the correct number of command line arguments is provided if len(sys.argv) != 3: print("Usage: python script.py input_file.xml output_file.xml") sys.exit(1)</pre>
<pre># Get input and output file names from command line arguments input_file = sys.argv[1] output_file = sys.argv[2] # Update lat and lon in the input file and save to the output file update_lat_lon_in_file(input_file, output_file)</pre>
<pre>ifname == "main": main()</pre>


```
1 <?xml version="1.0" encoding="UTF-8"?>
2 <osm generator="VMB">
   <MetaInfo format_version="1" map_version="2" validation_version=""/>
   <node id="1" lat="43.34567092534" lon="-79.76723736903">
     <tag k="local x" v="-84.195"/>
     <tag k="local y" v="-60.0152"/>
     <tag k="ele" v="-0.0002"/>
   </node>
   <node id="2" lat="43.34575688904" lon="-79.76688411699">
     <tag k="local x" v="-55.7046"/>
     <tag k="local_y" v="-50.0454"/>
     <tag k="ele" v="-0.0002"/>
   </node>
```

Before

```
version='1.0' encoding='utf-8'?>
2 <osm generator="VMB">
   <MetaInfo format_version="1" map_version="2" validation_version="" />
   <node id="1" lat="" lon="">
     <tag k="local x" v="-84.195" />
     <tag k="local y" v="-60.0152" />
     <tag k="ele" v="-0.0002" />
   </node>
   <node id="2" lat="" lon="">
     <tag k="local x" v="-55.7046" />
     <tag k="local y" v="-50.0454" />
     <tag k="ele" v="-0.0002" />
   </node>
```


Loading the Environment Into Autoware and AWSIM

Lanelet2 map and 3D model loaded in AWSIM [12]

💥 🔚 Interact 🔶 🍄 Move Camera 🗰 Select 🔶 Focus Camera 💻 Mea	asure	2D Pose Estimate 2D Goal Pose	2D Rough Goal Pose	👫 2D Dummy Pedestrian 🚘 2D Dummy Car 🛛 🕽 2D Dummy Bus	-
• AutowareStatePanel X				-> -> -> -> -> -> -> -> -> -> -> -> -> -	. D
Autoware Control		Р		15 👀 0 sec	~
Auto Local Remote Stop					
- Routing Unknown Clear Route					
Localization Uninitialized Initialize with GNSS					
Motion Moving Accept Start					
MRM State Unknown					■ V
MRM Behavior Unknown					C
Set Velocity Limit	•			(
0 km/h					
Set Emergency					T T
RecognitionResultOnImage ×					
No Image					
_ _					
					Vie

Point Cloud and Lanelet2 loaded in Autoware [13]

2D Checkpoint Pose
Displays
Global Options
/ Global Status: Ok
System
🖬 Map
Sensing
Localization
Perception
Planning
Control
🖿 Debug
and a second
Add Duplicat
/iews
: TopDownOrtho (rviz_det
Current View
Near Clip Distance
Target Frame
Scale
Angle
X
Y
ThirdPersonFollower
opDownOrtho
Save
Tool Desperting

Results: Initial Startup of AWSIM and Autoware

AWSIM is started first, sending all sensor data to **Autoware**

Vehicle localizes in **Autoware**, after receiving data from **AWSIM**

Results: Planning a Parking Scenario using Autoware

After setting a goal pose in a parking spot, **Autoware** calculates the route

Results: Parking Scenario Completed

Car reaches goal in **AWSIM**

Car reaches goal in Autoware

Results Conclusion

- Successful Simulation Testing:
 - completing a parking scenario in both AWSIM and Autoware.
- Real-World Potential:

 - more accessible.

• The workflow enables accurate AV testing in simulation environments, successfully

• The streamlined process demonstrates the ability to generate simulation-ready maps for various AV testing environments, enabling realistic testing and development. • Workflow is adaptable to various scenarios (e.g., parking lots, urban streets). • Reduces barriers to entry for researchers and developers, making AV simulation

Future Work

- Improved Model Accuracy
- Integration of SLAM Technologies
 - limitations in current 3D model accuracy.
- Optimizing Workflow Compatibility
 - flexibility for diverse testing environments.
- Flexible Handling of Latitude and Longitude Values
 - Improve control over the nullification process to enhance map accuracy

• Enhancing the precision of generated maps to better represent real-world environments.

• Using SLAM to generate accurate point clouds for real-world deployment, addressing

• Expanding the workflow's compatibility with a broader range of simulators, ensuring

References

- [1] "A Typical Multi-Lane Intersection Scenario," ResearchGate, 2021. https://www.researchgate.net/figure/A-typical-multi-lane-intersection-scenario fig1 352269970
- [2] Zhang et al., "Path Planning for AVs Using Fuzzy Logic," Wiley, 2023. https://doi.org/10.1002/asmb.2772
- [3] Gamba et al., "Automated Driving Test Scenarios," MDPI, 2023. https://www.mdpi.com/2624-8921/6/2/44
- [4] ASAM OpenSCENARIO, "Key Terms & Conceptual Overview," 2025. verview/key terms.html
- [5] "OSM to Pointcloud and Lanelet Conversion Process," GitHub, https://github.com/zubxxr/OSM-to-Pointcloud-and-Lanelet-Conversion-Process (accessed 2025-02-15).
- [6] OpenStreetMap, <u>https://www.openstreetmap.org/</u> (accessed 2025-02-15).
- [8] "Presentation," CloudCompare, https://www.cloudcompare.org/presentation.html (accessed 2025-02-15).
- [9] "About," Point Cloud Library, <u>https://pointclouds.org/about/</u> (accessed 2025-02-15).
- [10] Vector Map Builder, https://tools.tier4.jp/vector_map_builder_ll2/ (accessed 2025-02-15).
- [11] "remove lat lon.py," GitHub,
 - 2025-02-15).
- 2025-02-15).

[13] "Home Page," Autoware, https://autoware.org/ (accessed 2025-02-15).

https://publications.pages.asam.net/standards/ASAM OpenSCENARIO/ASAM OpenSCENARIO DSL/latest/conceptual-o

[7] T. Knerr, "OSM2World create 3D models from OpenStreetMap," OSM2World, https://osm2world.org/ (accessed 2025-02-15).

https://github.com/zubxxr/OSM-to-Pointcloud-and-Lanelet-Conversion-Process/blob/main/remove lat lon.py (accessed

[12] tier4, "Tier4/AWSIM: Open source simulator for self-driving vehicles," GitHub, https://github.com/tier4/AWSIM (accessed)