

Universidad de Jaén

Optimizing Picual Olive Variety Recognition through Deep Learning and Hyperspectral Imaging in Precision Agriculture

Authors

Alba Gómez (Researcher, University of Jaén)

Ruth M. Córdoba (Researcher, University of Jaén)

Juan J. Cubillas (Inform. and Commun. Technologies applied to Education,

International University of La Rioja)

Lidia M. Ortega (Computer Science. University of Jaén)

Index

- 1. The Challenge of Olive Variety Classification in Mixed Groves
- 2. Agricultural Context and Motivation of the Study
- 3. Research Objectives
- 4. Background and Related Work

5. General Methodology

- **5.1.** Hyperspectral Data Acquisition and Preparation
- **5.2.** Canopy Segmentation and Spectral Filtering
- **5.3.** Creation of Training, Validation, and Test Sets
- 6. Deep Learning Model Architecture
- 7. Model Results
- 8. Discussion and Analysis of the Results

Problems in Olive Variety Classification in Mixed Groves

- Manual classification is labor-intensive and impractical for large groves.
- → There are subtle differences between varieties, requiring advanced techniques.
- Only agricultural technicians and experienced farmers are able to distinguish varieties

IMPORTANCE: Accurate variety identification enhances olive oil quality and resource efficiency

The Challenge of Olive Variety Classification in Mixed Groves

- → Impact: affects irrigation, pruning, fertilization, and pest control strategies.
- → **Need**: automated, accurate variety identification.
- → The objectives related with Precision Agriculture:
 - Optimizing resources for sustainable farming.
 - Enhancing olive oil quality by controlling variety mixtures.
 - Improve crop yields and methodologies in large-scale groves.

Agricultural Context and Motivation of the Study

LOCATION

Jaén, Spain

World's leading olive oil producer.

KEY VARIETIES

Picual and Arbequina dominate.

STUDY SITE

IFAPA Venta del Llano Center

Mengíbar, Jaén.

Research objectives

- \rightarrow Utilize UAV-based hyperspectral imaging for high-resolution spectral data.
- \rightarrow Develop a deep learning-based approach for olive variety classification.
- → Achieve high accuracy in automatic classification Picual vs. non-Picual varieties.
- → Enable scalable, sustainable precision agriculture solutions.

General methodology

- Fly with a drone and a hyperspectral camera attached
- Select pixels from tree canopies without shadows
 - Process the spectral signature and provide data files
- Use this data as input to the
 Deep Learning methodology

Materials and Methods

Hyperspectral Imaging

→ HSI Overview: captures 270 spectral bands (400–1000 nm).

- → Advantages:
 - Detects subtle reflectance differences vs. multispectral imaging.
 - Used for vegetation monitoring, disease detection, and classification.

→ Relevance: ideal for distinguishing olive varieties.

Materials and Methods Deep Learning

- → Convolutional Neural Networks (CNNs) handle high-dimensional HSI data.
- → Automatic feature extraction reduces preprocessing.

Comparison: outperforms traditional methods (k-NN, Naïve-Bayes, Decision Tree).

Gap: limited DL research for olive variety classification.

Specific Methodology Dataset

Study Site: IFAPA farm, Mengíbar, Jaén 14 rows, 24 trees each.

Steps:

- Hyperspectral data acquisition via UAV + LiDAR.
- 2. Canopy segmentation and spectral filtering.
- Dataset preparation including augmentation (training/validation/test).
- 4. CNN modeling for Picual classification.

Dataset: 264 Picual and 264 non-Picual trees.

Specific Methodology

Hyperspectral Data Acquisition and Preparation

Acquisition:

UAV with NanoHyperspec camera and LiDAR sensor.

Flight: 30m altitude, 5 m/s speed, optimized overlap.

Data: 270 spectral bands (400–1000 nm).

Preparation:

Reflectance calibration using Headwall SpectralView™.

Geometric correction with LiDAR-derived DEM.

Outcome: High-quality dataset of 24 olive trees.

Specific Methodology

Canopy Segmentation and Spectral Filtering

Canopy Segmentation:

Method: Enhanced Vegetation Index (EVI) and DBSCAN clustering.

Outcome: individual tree canopies delineated with unique identifiers.

Spectral Filtering:

Method: remove noisy pixels (e.g., shadows) using NIR reflectance.

Outcome: spectrally stable dataset for CNN modeling.

Data Augmentation:

Method: obtain several individuals from an unique olive tree with Kmeans

Outcome: An augmented set of olive trees

Specific Methodology

Creation of Training, Validation, and Test Sets

Dataset: 264 Picual and 264 non-Picual trees (balanced).

Training: 80% (180 Picual, 186 non-Picual).

Validation: 20% (49 Picual, 43 non-Picual).

Test: 35 Picual, 35 non-Picual.

Purpose: ensure diverse, representative samples to prevent overfitting.

Dataset	Train Data	Validation Data	Test Data	Total
PI	180	49	35	264
NO PI	186	43	35	264

Deep Learning Model Architecture General View

Model: 1D CNN for Picual vs. non-Picual classification.

Architecture:

4 convolutional layers (ELU activation). 2 max-pooling layers (pool size = 3). Flatten layer Fully connected layer (ReLU) with dropout. Sigmoid output for binary classification.

Optimization: Bayesian optimization for hyperparameters.

Deep Learning Model Architecture General View

Deep Learning Model Architecture

Hyperparameter Optimization

Approach: manual tuning followed by *Bayesian* optimization.

Parameters:

- → **Filters:** 14, 29, 60, 111
- → Kernel Size: 4
- → Dense Neurons: 59
- → Pool Size: 3
- → Batch Size: 32
- → **Epochs:** 50
- → Patience: 10

Benefit: enhanced model accuracy and efficiency.

Picual				
Hyperparameters	Value			
Filter 1	14			
Filter 2	29			
Filter 3	60			
Filter 4	111			
Kernel size	4			
Dense Neurons	59			
Pool Size	3			
Batch Size	32			
Epochs	50			
Patience	10			

Model Results

Class	Precision	Recall	F1-Score
Picual	0.84	0.96	0.90
No Picual	0.94	0.79	0.86
Accuracy	0.88		
Macro Avg	0.89	0.87	0.88
Weighted Avg	0.89	0.88	0.88

Discussion and Analysis of the Results

Key Findings:

- → CNN achieves 88% accuracy, outperforms traditional methods.
- → High recall (96%) for Picual ensures reliable identification.

Strengths:

- → Automated feature extraction simplifies processing.
- → Scalable UAV-based HSI.

Limitations:

- → Single farm testing limits generalizability.
- → Environmental condition impacts.

Discussion and Analysis of the Results Future Work

- Expand to more varieties and farms.
- → Test under diverse environmental conditions.
- → Explore 2D/3D CNNs and integrate LiDAR.
- → Automate regional species cataloging.

Thanks for your attention

Any questions??

Grupo de Gráficos y Geomática de Jaén

Alba Gómez Liébana | aglieban@ujaen.es Lidia Ortega Alvarado | lidia@ujaen.es Ruth Córdoba Ortega | rcortega@ujaen.es Juan J. Cubillas | juanjose.cubillas@unir.net