Applying an artificial neuromolecular system with autonomous learning capability to learn to control the movement of a six-axis robotic arm

Jong-Chen Chen & Guan-Rong Chen

Jong-Chen Chen, National Yunlin University of Science and Technology jcchen@yuntech.edu.tw

Jong-Chen Chen's resume

- Associate professor, Information Management Department, National Yunlin University of Science and Technology, Taiwan, 1994-1999
- Professor, Information Management Department, National Yunlin University of Science and Technology, Taiwan, 2000-now

Research interests

- He has published a number of papers in the fields of evolutionary computation, neural network, biological information processing, sensors, applied science, and artificial intelligence.
- His research interests include evolvable hardware, brain-like computer simulation, ecosystem simulation, bio-computing, artificial life, molecular electronics, evolutionary computation, genetic programming, and pattern recognition.

Introduction

Robotic arms play an increasingly vital role across various fields.

Currently, most robotic arms still rely on engineers' careful design and machine control, which sometimes lacks a certain degree of flexibility.

A six-axis robot

Working range of each axis

Axis	Working range	Maximum speed	
Axis 1	-110° ~ +160°	85°/s	
Axis 2	-35° ~ +70°	60°/s	
Axis 3	°-120° ~ +60°	65°/s	
Axis 4	-180° to +180°	200°/s	
Axis 5	-200° ~ +30°	200°/s	
Axis 6	-360° ~ +360°	450°/s	

- The goal of this study is to explore using a system endowed with autonomous learning capabilities to learn and control the movements of a six-axis robotic arm.
- The research method enables this robotic arm to autonomously determine its movement trajectory, transitioning from a specific point to a fixed position while grasping an object at a designated angle.

The Learning System

(An artificial neuromolecular system)

- It integrates inter- and intra-neuronal information processing.
- It consists of two types of neurons: one for local/refined searching and the other for global/gross searching.

Central Architecture

reference neuron slobal/gross searching

local/refined searching

Overall architecture

Detailed Central Architecture

Cytoskeletal neuron

Signal flow

Signal interaction

Signal integration

external signals

Evolutionary learning

(cytoskeletal neurons)

(a) evaluate

readin, readout, MAP, component

(b) copy $E_1 ext{ } E_2 ext{ } E_3 ext{ } E_4 ext{ } DE_1 ext{ } DE_2 ext{ } DE_3 ext{ } DE_4$ subnet 1 subnet 2

subnet 1

subnet 2

Evolutionary learning

(reference neurons)

Input-output interface

Two Parts of the Experiments

 The first part is a large-scale movement experiment in which the system has to learn how to control the relatively large movement trajectory of the six-axis robot arm.

 The second part is a small-scale movement experiment in which the system has to learn how to coordinate the sixaxis robot arms to produce detailed suction movements.

Large scale movement

Small scale movement

Conclusions

• The results indicate that the system can successfully reach target points and effectively grasp objects. Additionally, thorough testing was conducted to evaluate whether the molecular-like nervous system allows the robotic arm to execute corresponding movements proficiently.

Conclusions

• The study shows that this molecular-like jumpy system can effectively utilize previously learned actions after a learning period. This adaptability enables the robotic arm to adjust its operations for similar tasks, thereby achieving what is known as the transfer learning effect.

Thanks for listening.