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Key Contributions
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• A comparison of KANs and MLP in continual learning using 
the Split-MNIST benchmark.

• Testing experience replay (random sampling) and stratified 
(class-balanced) replay strategies for mitigating forgetting.

• Introduction and evaluation of two novel KAN-specific 
freezing techniques, targeting spline control points and 
entire spline tensors.
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Introduction
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• Traditional models like MLPs forget earlier tasks when 
trained sequentially (shared parameters overwritten during 
sequential training resulting in catastrophic forgetting)

• Kolmogorov–Arnold Networks (KANs) use adaptive 
spline activations that may help preserve prior 
knowledge

• KANs offer interpretable, modular transformations. Could 
they also improve retention in continual learning?



Problem Statement
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• Goal 1: Evaluate KAN vs. MLP on continual learning with replay 
strategies

• Goal 2: Goal 2: Explore KAN-specific freezing techniques to 
improve memory retention

• Key Questions: 
- Do KANs retain prior knowledge better? 
- Does spline freezing help mitigate forgetting?
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Kolmogorov-Arnold Network Architecture

8

IARIA Congress 2025 - Progressively Overcoming Catastrophic Forgetting in Kolmogorov–Arnold Networks

What are KANs?

• Neural networks based on the Kolmogorov-Arnold representation theorem

• Use spline-based learnable activation functions instead of traditional fixed activations

Why KANs?

• Enhanced flexibility and interpretability

• Adaptability to complex, non-linear relationships in data

fixed activation functions 
on nodes (like ReLU)

learnable weights on 
edges

Traditional MLPs:

c

KANs:

learnable activation 
functions on edges

sum operation on nodes

univariate functions

Z. Liu et al., KAN: Kolmogorov-Arnold Networks, 2024.
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Methodology
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Models: MLP and KAN

Forgetting Mitigation Strategies: 

Replay and Stratified (balanced) replay

Spline Freezing Strategies: 

Tensor-level and Point-level freezing

Dataset: MNIST (handwritten digits)

Evaluation Metrics: Accuracy, Forgetting
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KAN vs. MLP Architectures
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Input Layer: Takes the raw input data 
(28x28 pixel image, or 784 features.).

Hidden Layer 128-dimensional hidden 
layer applies fixed activation functions 
(e.g., ReLU), and every neuron is fully 
connected to neurons in adjacent layers.

Output Layer: Produces the final 
classification or prediction (10 - one 
neuron per class for MNIST digits). 

Input Layer: Similar to MLP, takes raw 
input data.

KANLinear Layers: Replaces standard 
hidden layers with layers using learnable 
spline-based activation functions, 
allowing flexibility in how activations 
adapt during training.

Output Layer: Similar to MLP, outputs 
predictions (e.g., digits 0–9 for 
classification). 

MLP KAN
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KAN vs. MLP Architectures
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MLP: Fixed weights and ReLU activations.     KAN: Spline-based activations on edges. 
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Continual Learning Setup
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• To simulate continual learning under the Split-MNIST protocol, we split the dataset into Task A and Task B

• The model is first trained on Task A, then trained on Task B

• Forgetting is quantified as the drop in Task A accuracy after Task B training 
(how well the model can predict labels from test set A after two consecutive training rounds)
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Replay and Stratified (balanced) Replay
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• To mitigate forgetting, we implement two forms of experience replay, preserving a subset of 
Task A examples and mixing them into the Task B training set

• In replay scenario Task A examples are sampled randomly, In the balanced replay scenario, 
examples are sampled in a stratified fashion

• We tested replay buffer sizes of 50, 100, and 500, where the buffer size denotes the number 
of  retained data samples
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Spline Freezing Strategies
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In this strategy, we compute a score for each
spline row and freeze the top k% rows in the
KAN architecture

The top k% of individual control points in the
spline weight matrix are frozen, regardless of
their row or neuron association.

Tensor-level freezing Point-level freezing
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Spline Freezing Strategies
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• For both strategies, we test k ∈ {0.05,0.1,0.25,0.5,0.75}, spanning from minimal to aggressive freezing

• Three scoring methods: weight - mean absolute value of the weights in each row; grad - mean absolute 

gradient magnitude per row; weight grad - a combination of both weight and grad

• Freezing is applied after Task A and frozen parameters are excluded from optimization updates by 

masking their gradients before applying the optimizer steps
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Results - MLP and KAN
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• The clean setting refers to training on all MNIST classes

simultaneously, serving as an upper-bound reference

• Both models achieve high accuracy on the full MNIST
(88.8% and 88.6%, respectively)

• Both models but suffer from severe catastrophic forgetting

when trained sequentially on separated tasks – baseline
(Task A accuracy drops by nearly 96%, resulting in an overall accuracy of just

43.4% for MLP and 43.3% for KAN)

• Both replay and s-replay improve accuracy and retention.
(with replay buffer size 100, MLP and KAN reach 83.5% and 84.5%

accuracy, respectively, while s-replay achieves 83.2% for MLP and

82.1% for KAN)

• We selected buffer size of 100 for subsequent

experiments, as it maintained measurable room for

improvement while ensuring sufficient retention to validate

the impact of freezing methods.
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Results – Tensor(TF) and Point(PF) Freezing
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• Both TF and PF improve continual learning 

when paired with replay, however, their 

effectiveness depends on the configuration.

• PF offers consistent gains, especially under s-

replay. Most k values outperform the no-freeze 

baseline, with the best configuration pf_g_s-

replay100 at k = 25%

• TF shows greater variability but also higher 

potential. The best configuration 

tf_wg_replay100 at k = 75% yielded the top 

accuracy overall
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Results – Accuracy and Forgetting
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• Tables indicate the top-k% of tensor rows or 

control points using heuristics based on weights 

(w), gradients (g), or a weighted average (wg)

• PF under s-replay remained effective across 

multiple k values, with most configurations 

improving over the no-freeze baseline.

• The top-performing setups for TF confirm that 

tensor-freezing can outperform point-freezing in 

certain cases when appropriately tuned

• The broader range of outcomes highlights that TF 

is more sensitive to the choice of k and scoring 

strategy, reinforcing the need for careful 

calibration.
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Conclusions
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• This paper investigated KANs in continual learning

• Both tensor-level and point-level spline freezing consistently improve retention 

in Split-MNIST when paired with simple replay, while the absolute 

improvements are moderate (up to +2.2 % overall accuracy and a 5.4 % 

reduction in forgetting) 

• These KAN-specific freezing strategies leverage the spline structure to 

preserve prior task knowledge, opening a promising direction for more targeted 

retention strategies.
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Future Work

• Exploring freezing in deeper KANs
• Integration with regularization and dynamic expansion methods
• Testing on more complex benchmarks beyond MNIST
• Developing adaptive freezing and unfreezing strategies
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With these enhancements, we expect to achieve higher retention and greater
robustness in continual learning tasks, further unlocking the potential of KANs
for long-term knowledge consolidation
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