Progressively Overcoming Catastrophic Forgetting in Kolmogorov–Arnold Networks

Evgenii Ostanin

Nebojsa Djosic

Fatima Hussain eostanin@torontomu.ca nebojsa.djosic@torontomu.ca fatima.hussain@torontomu.ca

Salah Sharieh salah.sharieh@torontomu.ca

Alexander Ferworn aferworn@torontomu.ca

Malek Sharieh malek.sharieh@hts.on.ca

Toronto Metropolitan University, Toronto, Canada

Presenter Evgenii Ostanin

IARIA Congress 2025, July 06, 2025 to July 10, 2025 - Venice, Italy

Evgenii Ostanin has extensive experience in Economics, Finance, and Data Science, having worked with leading multinational companies to develop automation tools, financial models, and innovative solutions. He has contributed to several patents and proof-of-concept projects, advancing data science and technology.

Currently, he is pursuing a PhD in Computer Science at Toronto Metropolitan University (TMU).

The authors are members of the Computer Science Department at the Toronto Metropolitan University (formerly Ryerson).

They are actively involved in research and applied projects centered on leveraging Artificial Intelligence and Machine Learning for automation in key domains including cybersecurity, governance, and public safety.

Presentation Outline

- Introduction and Problem Statement
- Kolmogorov-Arnold Networks (KANs) introduction
- Methodology and Architecture
- Experimental Results
- Conclusions and Future Work

Key Contributions

- A comparison of KANs and MLP in continual learning using the Split-MNIST benchmark.
- Testing experience replay (random sampling) and stratified (class-balanced) replay strategies for mitigating forgetting.
- Introduction and evaluation of two novel KAN-specific freezing techniques, targeting spline control points and entire spline tensors.

Toronto Metropolitan University

Introduction

- Traditional models like MLPs forget earlier tasks when trained sequentially (shared parameters overwritten during sequential training resulting in catastrophic forgetting)
- Kolmogorov–Arnold Networks (KANs) use adaptive spline activations that may help preserve prior knowledge
- KANs offer interpretable, modular transformations. Could they also improve retention in continual learning?

Problem Statement

- **Goal 1:** Evaluate KAN vs. MLP on continual learning with replay strategies
- **Goal 2:** Goal 2: Explore KAN-specific freezing techniques to improve memory retention
- Key Questions:
 - Do KANs retain prior knowledge better?
 - Does spline freezing help mitigate forgetting?

Kolmogorov-Arnold Network Architecture

What are KANs?

- Neural networks based on the *Kolmogorov-Arnold* representation theorem
- Use *spline-based* learnable activation functions instead of traditional fixed activations

 P_3

spline₁

Why KANs?

Toronto Metropolitan

University

Traditional MLPs:

fixed activation functions

on nodes (like ReLU)

learnable weights on

edges

- Enhanced flexibility and interpretability
- Adaptability to complex, non-linear relationships in data

Z. Liu et al., KAN: Kolmogorov-Arnold Networks, 2024.

 P_7

 P_6

spline

spline₃

Methodology

Models: MLP and KAN

Forgetting Mitigation Strategies:

Replay and Stratified (balanced) replay

Spline Freezing Strategies:

Tensor-level and Point-level freezing **Dataset**: MNIST (handwritten digits)

Evaluation Metrics: Accuracy, Forgetting

KAN vs. MLP Architectures

MLP

Input Layer: Takes the raw input data (28x28 pixel image, or 784 features.).

Hidden Layer 128-dimensional hidden layer applies fixed activation functions (e.g., ReLU), and every neuron is fully connected to neurons in adjacent layers.

Output Layer: Produces the final classification or prediction (10 - one neuron per class for MNIST digits).

KAN

Input Layer: Similar to MLP, takes raw input data.

KANLinear Layers: Replaces standard hidden layers with layers using learnable spline-based activation functions, allowing flexibility in how activations adapt during training.

Output Layer: Similar to MLP, outputs predictions (e.g., digits 0–9 for classification).

KAN vs. MLP Architectures

MLP: Fixed weights and ReLU activations.

KAN: Spline-based activations on edges.

Continual Learning Setup

Toronto

University

- To simulate continual learning under the Split-MNIST protocol, we split the dataset into Task A and Task B
- The model is first trained on Task A, then trained on Task B
- Forgetting is quantified as the drop in Task A accuracy after Task B training (how well the model can predict labels from test set A after two consecutive training rounds)

12

Replay and Stratified (balanced) Replay

Toronto Metr<u>opolitan</u>

University

- To mitigate forgetting, we implement two forms of experience replay, preserving a subset of Task A examples and mixing them into the Task B training set
- In replay scenario Task A examples are sampled randomly, In the balanced replay scenario, examples are sampled in a stratified fashion
- We tested replay buffer sizes of 50, 100, and 500, where the buffer size denotes the number of retained data samples

Spline Freezing Strategies

Tensor-level freezing

In this strategy, we compute a score for each spline row and freeze the top k% rows in the KAN architecture

Toronto Metropolitan

Jniversity

Point-level freezing

The top k% of individual control points in the spline weight matrix are frozen, regardless of their row or neuron association.

14

Spline Freezing Strategies

Toronto Metr<u>opolitan</u>

University

- For both strategies, we test k ∈ {0.05,0.1,0.25,0.5,0.75}, spanning from minimal to aggressive freezing
- Three scoring methods: **weight** mean absolute value of the weights in each row; **grad** mean absolute gradient magnitude per row; **weight grad** a combination of both weight and grad
- Freezing is applied after Task A and frozen parameters are excluded from optimization updates by masking their gradients before applying the optimizer steps

Results - MLP and KAN

- The clean setting refers to training on all MNIST classes simultaneously, serving as an upper-bound reference
- Both models achieve high accuracy on the full MNIST (88.8% and 88.6%, respectively)
- Both models but suffer from severe catastrophic forgetting when trained sequentially on separated tasks – baseline (Task A accuracy drops by nearly 96%, resulting in an overall accuracy of just 43.4% for MLP and 43.3% for KAN)
- Both replay and s-replay improve accuracy and retention. (with replay buffer size 100, MLP and KAN reach 83.5% and 84.5% accuracy, respectively, while s-replay achieves 83.2% for MLP and 82.1% for KAN)
- We selected buffer size of 100 for subsequent experiments, as it maintained measurable room for improvement while ensuring sufficient retention to validate the impact of freezing methods.

Toronto

Metropolitan

University

Results – Tensor(TF) and Point(PF) Freezing

- Both TF and PF improve continual learning when paired with replay, however, their effectiveness depends on the configuration.
- PF offers consistent gains, especially under sreplay. Most k values outperform the no-freeze baseline, with the best configuration pf_g_sreplay100 at k = 25%
- TF shows greater variability but also higher potential. The best configuration tf_wg_replay100 at k = 75% yielded the top accuracy overall

Toronto

Metropolitan

Iniversity

Results – Accuracy and Forgetting

- ۲ Tables indicate the top-k% of tensor rows or control points using heuristics based on weights (w), gradients (g), or a weighted average (wg)
- PF under s-replay remained effective across ۰ multiple k values, with most configurations improving over the no-freeze baseline.
- The top-performing setups for TF confirm that ۲ tensor-freezing can outperform point-freezing in certain cases when appropriately tuned
- The broader range of outcomes highlights that TF • is more sensitive to the choice of k and scoring strategy, reinforcing the need for careful calibration.

Toronto letropolitan

niversity

	Method	no freeze	k5%	k10%	k25%	k50%	k75%
Accuracy	pf_w_replay100	0.845	0.817	0.841	0.830	0.837	0.816
	pf_g_replay100	0.845	0.833	0.835	0.822	0.845	0.824
	pf_wg_replay100	0.845	0.838	0.832	0.842	0.824	0.844
	pf_w_s-replay100	0.821	0.816	0.828	0.831	0.833	0.829
	pf_g_s-replay100	0.821	0.834	0.839	0.843	0.839	0.827
	pf_wg_s-replay100	0.821	0.825	0.838	0.840	0.838	0.829
	tf_w_replay100	0.845	0.851	0.813	0.834	0.844	0.821
	tf_g_replay100	0.845	0.840	0.846	0.830	0.834	0.843
	tf_wg_replay100	0.845	0.818	0.834	0.833	0.832	0.852
	tf_w_s-replay100	0.821	0.837	0.826	0.826	0.835	0.829
	tf_g_s-replay100	0.821	0.831	0.832	0.834	0.842	0.843
	tf_wg_s-replay100	0.821	0.851	0.841	0.841	0.841	0.837
	Method	no freeze	k5%	k10%	k25%	k50%	k75%
	Method pf_w_replay100	no freeze 0.137	k5% 0.185	k10% 0.133	k25% 0.154	k50% 0.137	k75% 0.178
	Method pf_w_replay100 pf_g_replay100	no freeze 0.137 0.137	k5% 0.185 0.166	k10% 0.133 0.153	k25% 0.154 0.178	k50% 0.137 0.123	k75% 0.178 0.157
	Method pf_w_replay100 pf_g_replay100 pf_wg_replay100	no freeze 0.137 0.137 0.137	k5% 0.185 0.166 0.141	k10% 0.133 0.153 0.144	k25% 0.154 0.178 0.133	k50% 0.137 0.123 0.166	k75% 0.178 0.157 0.112
D	Method pf_w_replay100 pf_g_replay100 pf_wg_replay100 pf_w_s-replay100	no freeze 0.137 0.137 0.137 0.137 0.187	k5% 0.185 0.166 0.141 0.182	k10% 0.133 0.153 0.144 0.166	k25% 0.154 0.178 0.133 0.160	k50% 0.137 0.123 0.166 0.155	k75% 0.178 0.157 0.112 0.157
ting	Methodpf_w_replay100pf_g_replay100pf_wg_replay100pf_w_s-replay100pf_g_s-replay100	no freeze 0.137 0.137 0.137 0.187 0.187	k5% 0.185 0.166 0.141 0.182 0.162	k10% 0.133 0.153 0.144 0.166 0.135	k25% 0.154 0.178 0.133 0.160 0.133	k50% 0.137 0.123 0.166 0.155 0.143	k75% 0.178 0.157 0.112 0.157 0.155
getting	Method pf_w_replay100 pf_g_replay100 pf_wg_replay100 pf_w_s-replay100 pf_g_s-replay100 pf_wg_s-replay100	no freeze 0.137 0.137 0.137 0.137 0.187 0.187 0.187	k5% 0.185 0.166 0.141 0.182 0.162 0.173	k10% 0.133 0.153 0.144 0.166 0.135 0.135	k25% 0.154 0.178 0.133 0.160 0.133 0.148	k50% 0.137 0.123 0.166 0.155 0.143 0.130	k75% 0.178 0.157 0.112 0.157 0.155 0.152
orgetting	Methodpf_w_replay100pf_g_replay100pf_wg_replay100pf_w_s-replay100pf_g_s-replay100pf_wg_s-replay100tf_w_replay100	no freeze 0.137 0.137 0.137 0.187 0.187 0.187 0.187 0.137	k5% 0.185 0.166 0.141 0.182 0.162 0.173 0.116	k10% 0.133 0.153 0.144 0.166 0.135 0.135 0.200	k25% 0.154 0.178 0.133 0.160 0.133 0.148 0.153	k50% 0.137 0.123 0.166 0.155 0.143 0.130 0.133	k75% 0.178 0.157 0.112 0.157 0.155 0.152 0.163
Forgetting	Methodpf_w_replay100pf_g_replay100pf_wg_replay100pf_ws-replay100pf_ws-replay100pf_wg_s-replay100tf_w_replay100tf_g_replay100tf_g_replay100	no freeze 0.137 0.137 0.137 0.187 0.187 0.187 0.187 0.137 0.137	k5% 0.185 0.166 0.141 0.182 0.162 0.173 0.116 0.121	k10% 0.133 0.153 0.144 0.166 0.135 0.135 0.200 0.133	k25% 0.154 0.178 0.133 0.160 0.133 0.148 0.153 0.165	k50% 0.137 0.123 0.166 0.155 0.143 0.130 0.133 0.158	k75% 0.178 0.157 0.157 0.155 0.152 0.163 0.116
Forgetting	Methodpf_w_replay100pf_g_replay100pf_wg_replay100pf_w_s-replay100pf_wg_s-replay100pf_wg_replay100tf_w_replay100tf_g_replay100tf_wg_replay100tf_wg_replay100	no freeze 0.137 0.137 0.137 0.187 0.187 0.187 0.137 0.137 0.137	k5% 0.185 0.166 0.141 0.182 0.162 0.173 0.116 0.121 0.197	k10% 0.133 0.153 0.144 0.166 0.135 0.135 0.200 0.133 0.151	k25% 0.154 0.178 0.133 0.160 0.133 0.148 0.153 0.165 0.155	k50% 0.137 0.123 0.166 0.155 0.143 0.130 0.133 0.158 0.149	k75% 0.178 0.157 0.112 0.155 0.155 0.152 0.163 0.116 0.101
Forgetting	Method pf_w_replay100 pf_g_replay100 pf_wg_replay100 pf_w_s-replay100 pf_wg_s-replay100 pf_wg_s-replay100 tf_w_replay100 tf_g_replay100 tf_w_replay100 tf_w_replay100 tf_ws_replay100 tf_ws_replay100 tf_ws_replay100 tf_ws_replay100 tf_ws_replay100	no freeze 0.137 0.137 0.137 0.187 0.187 0.187 0.187 0.137 0.137 0.137 0.137	k5% 0.185 0.166 0.141 0.182 0.162 0.173 0.116 0.121 0.197 0.141	k10% 0.133 0.153 0.144 0.166 0.135 0.135 0.200 0.133 0.151 0.168	k25% 0.154 0.178 0.133 0.160 0.133 0.148 0.153 0.165 0.155 0.174	k50% 0.137 0.123 0.166 0.155 0.143 0.130 0.133 0.158 0.149 0.130	k75% 0.178 0.157 0.155 0.155 0.152 0.163 0.116 0.101 0.152
Forgetting	Methodpf_w_replay100pf_g_replay100pf_wg_replay100pf_w_s-replay100pf_wg_s-replay100pf_wg_replay100tf_w_replay100tf_wg_replay100tf_wg_replay100tf_wg_replay100tf_wg_replay100tf_ws-replay100tf_ws-replay100tf_s-replay100tf_s-replay100tf_s-replay100tf_s-replay100tf_s-replay100tf_s-replay100tf_s-replay100tf_s-replay100tf_s-replay100tf_s-replay100tf_s-replay100tf_s-replay100tf_s-replay100tf_s-replay100tf_s-replay100	no freeze 0.137 0.137 0.137 0.187 0.187 0.187 0.137 0.137 0.137 0.137 0.137 0.137 0.137	k5% 0.185 0.166 0.141 0.182 0.162 0.173 0.116 0.121 0.197 0.141 0.143	k10% 0.133 0.153 0.144 0.166 0.135 0.135 0.135 0.200 0.133 0.151 0.168 0.164	k25% 0.154 0.178 0.133 0.160 0.133 0.148 0.153 0.165 0.155 0.174 0.152	k50% 0.137 0.123 0.166 0.155 0.143 0.130 0.133 0.158 0.149 0.130 0.137	k75% 0.178 0.157 0.155 0.155 0.152 0.163 0.101 0.101 0.152 0.127
Forgetting	Method pf_w_replay100 pf_g_replay100 pf_wg_replay100 pf_w_s-replay100 pf_wg_s-replay100 pf_wreplay100 tf_w_replay100 tf_g_replay100 tf_wg_replay100 tf_wg_replay100 tf_wg_replay100 tf_wg_replay100 tf_ws_s-replay100 tf_ws_replay100 tf_ws_s-replay100	no freeze 0.137 0.137 0.137 0.187 0.187 0.187 0.137 0.137 0.137 0.137 0.187 0.187 0.187	k5% 0.185 0.166 0.141 0.182 0.162 0.173 0.116 0.121 0.197 0.141 0.143 0.123	k10% 0.133 0.153 0.144 0.166 0.135 0.135 0.200 0.133 0.151 0.168 0.164 0.134	k25% 0.154 0.178 0.133 0.160 0.133 0.148 0.153 0.165 0.155 0.174 0.152 0.132	k50% 0.137 0.123 0.166 0.155 0.143 0.130 0.133 0.158 0.149 0.130 0.137 0.137	k75% 0.178 0.157 0.112 0.155 0.152 0.163 0.116 0.101 0.152 0.127 0.136

- 18

Conclusions

- This paper investigated KANs in continual learning
- Both tensor-level and point-level spline freezing consistently improve retention in Split-MNIST when paired with simple replay, while the absolute improvements are moderate (up to +2.2 % overall accuracy and a 5.4 % reduction in forgetting)
- These KAN-specific freezing strategies leverage the spline structure to preserve prior task knowledge, opening a promising direction for more targeted retention strategies.

Future Work

- Exploring freezing in deeper KANs
- Integration with regularization and dynamic expansion methods
- Testing on more complex benchmarks beyond MNIST
- Developing adaptive freezing and unfreezing strategies

With these enhancements, we expect to achieve higher retention and greater robustness in continual learning tasks, further unlocking the potential of KANs for long-term knowledge consolidation

Toronto Metropolitan University

eostanin@torontomu.ca

Q & A