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> Led by Prof. Munehiro Fukuda at 
UW Bothell, focusing on parallel & 
distributed computing.

> Current research includes agent-
based computing, graph 
database, and large-scale 
simulations.

> Future directions focus on 
improving scalability, optimizing 
parallel performance, and 
integrating AI/ML techniques.

> https://depts.washington.edu/dsl
ab/

Distributed Systems Laboratory(DSL)
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> Large, complex graphs require scalable 
solutions

> Static frameworks struggle with dynamic 
graphs

> Q-learning agents can learn & adapt to 
changes dynamically

Introduction - Why Do We Need Q-learning for 
Graph Problems

Image Source: Algorithms for Large-Scale Graph Processing
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Four main project goals:

1. Design agent-based Q-learning applications in MASS
• Shortest Path

• Closeness & Betweenness Centrality

2. Improve scalability & adaptability in dynamic graphs

3. Leverage MASS’ multi-agent capabilities to improve performance

4. Evaluate MASS agent-based machine learning capabilities

Introduction - Our Research Goals
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> Google’s Pregel & Spark 
GraphX
– Static, precomputed models

> Q-learning
– Dynamic, adaptive, and 

reinforcement-driven

> Research Gap
– Focuses on small, static graphs

– Require preprocessing and 
computation to be effective

Background – Traditional Graph Computing vs. Q-
learning
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> Model-free and off-policy 

> Trial & error learning

> Q-Learning Process:
1. Initialize Q-Table

2. Set hyperparameters

3. Choose an action

4. Perform action & observe the 
outcome

5. Update Q-value with:

6. Repeat until training episodes 
are completed or convergence

Related Work – How Q-learning Works 

Image Source: Introduction to Q-Learning
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> Multi-Agent Spatial Simulation 
Library(MASS)

> Designed to facilitate spatial 
simulations and big data 
analysis in a parallel 
environment

> Two primary components:
– Places – distributed individual dataset 

members

– Agents – computation entities that 
traverse data

> Threads are assigned to Place 
objects and can communicate 
with other Places and agents 
that reside on them 

Implementation - Multi-Agent Spatial Simulation 
Framework
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> MASS has been extended to 
support explicit graph structures 

> GraphPlaces
– Place -> VertexPlace

> Agents
– Agent -> GraphAgent

> Dynamic graph creation:
– AddVertex & AddEdge

– LoadDSL()

> Balanced vertex distribution

Implementation - Multi-Agent Spatial Simulation 
Framework

Image Source: Luger, GraphPlaces Refactoring & Distributed Data Structures
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> Comprised of four main classes:
– ShortestPath – driver

– Node – environment

– QLAgent – intelligent agent

– PathAgent – path enumeration agent

> Agent-Based Learning: Q-learning agents explore a distributed 
graph, updating a shared Q-table to learn optimal paths.

> MASS-enabled Q-learning Improvements
– Multi-agent Training

– Distributed Q-table & Reward Window

– Dynamic Hyperparameter Tuning

Implementation - Q-Learning in MASS
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> Synthetic Graph Dataset:
– 500-16,000 Nodes

– Random graph generation

> Road Network Dataset:
– 1,861-19,096 Nodes

– OpenStreetMap data

> Synthetic Centrality Dataset:
– 8-256 Nodes

– Random Graph Generation

> Computing Cluster:
– 8 VMs, Intel Xeon Gold 6130, 16GB 

RAM

> Performance measured in 
training time & adaptability

Evaluation - Experimental Setup
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> Single node is optimal up 
to 8,000 nodes

> Above 8,000, multi-node 
execution is required

> Multi-agent training cuts 
training time by 190%

Evaluation – Q-learning Shortest Path
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> Performs well on 
small graphs

> Quadratically scaling 
as size grows – 
inefficient for large 
graphs

> High memory 
demands limit 
scalability

Evaluation – Closeness & Betweenness Centrality
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> Handles small 
changes efficiently

> Outperforms static 
methods in single-
node removal

> Requires more 
significant 
retraining for larger 
topology shifts

Evaluation – Dynamic Graph Adaptability
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> Shortest path performance gains on static and dynamic graphs; 
centrality still needs optimization

> MASS-enabled features significantly improved performance

> Multi-agent training → 190% reduction in training time

> Distributed reward window → faster convergence

> Dynamic hyperparameter tuning → self-optimizing agents

Conclusion – What We Achieved
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Challenges:

> Scalability of centrality metrics

> Long training time for large graphs

> Necessity of hyperparameter fine-tuning for different graph types

Future Work:

> Graph Convolutional Networks (GCNs)

> Improved agent communication

> Online Q-learning for real-time updates

Conclusion - Challenges & Future Work
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Questions?

Q&A
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