
Applying Q-Learning 
Agents to Distributed 
Graph Problems

Jeffrey McCrea, Munehiro Fukuda
School of Science, Technology, Engineering & Mathematics
Contact Email: mccreajeff@gmail.com 



Jeff McCrea – mccreajeff@gmail.com
> Master of Science in Computer 

Science & Software Engineering – 
University of Washington Bothell.

> Research Interests: Distributed 
computing, agent-based modeling, 
and reinforcement learning.

> Professional Experience: IT 
consultant specializing in enterprise 
IT environments.

> Academic & Industry Focus: 
Scalable computing solutions, 
multi-agent systems, and AI-driven 
optimization.

About Me

1



> Led by Prof. Munehiro Fukuda at 
UW Bothell, focusing on parallel & 
distributed computing.

> Current research includes agent-
based computing, graph 
database, and large-scale 
simulations.

> Future directions focus on 
improving scalability, optimizing 
parallel performance, and 
integrating AI/ML techniques.

> https://depts.washington.edu/dsl
ab/

Distributed Systems Laboratory(DSL)

2



> Large, complex graphs require scalable 
solutions

> Static frameworks struggle with dynamic 
graphs

> Q-learning agents can learn & adapt to 
changes dynamically

Introduction - Why Do We Need Q-learning for 
Graph Problems

Image Source: Algorithms for Large-Scale Graph Processing

3



Four main project goals:

1. Design agent-based Q-learning applications in MASS
• Shortest Path

• Closeness & Betweenness Centrality

2. Improve scalability & adaptability in dynamic graphs

3. Leverage MASS’ multi-agent capabilities to improve performance

4. Evaluate MASS agent-based machine learning capabilities

Introduction - Our Research Goals

4



> Google’s Pregel & Spark 
GraphX
– Static, precomputed models

> Q-learning
– Dynamic, adaptive, and 

reinforcement-driven

> Research Gap
– Focuses on small, static graphs

– Require preprocessing and 
computation to be effective

Background – Traditional Graph Computing vs. Q-
learning

5



> Model-free and off-policy 

> Trial & error learning

> Q-Learning Process:
1. Initialize Q-Table

2. Set hyperparameters

3. Choose an action

4. Perform action & observe the 
outcome

5. Update Q-value with:

6. Repeat until training episodes 
are completed or convergence

Related Work – How Q-learning Works 

Image Source: Introduction to Q-Learning

6



> Multi-Agent Spatial Simulation 
Library(MASS)

> Designed to facilitate spatial 
simulations and big data 
analysis in a parallel 
environment

> Two primary components:
– Places – distributed individual dataset 

members

– Agents – computation entities that 
traverse data

> Threads are assigned to Place 
objects and can communicate 
with other Places and agents 
that reside on them 

Implementation - Multi-Agent Spatial Simulation 
Framework

7



> MASS has been extended to 
support explicit graph structures 

> GraphPlaces
– Place -> VertexPlace

> Agents
– Agent -> GraphAgent

> Dynamic graph creation:
– AddVertex & AddEdge

– LoadDSL()

> Balanced vertex distribution

Implementation - Multi-Agent Spatial Simulation 
Framework

Image Source: Luger, GraphPlaces Refactoring & Distributed Data Structures

8



> Comprised of four main classes:
– ShortestPath – driver

– Node – environment

– QLAgent – intelligent agent

– PathAgent – path enumeration agent

> Agent-Based Learning: Q-learning agents explore a distributed 
graph, updating a shared Q-table to learn optimal paths.

> MASS-enabled Q-learning Improvements
– Multi-agent Training

– Distributed Q-table & Reward Window

– Dynamic Hyperparameter Tuning

Implementation - Q-Learning in MASS

9



> Synthetic Graph Dataset:
– 500-16,000 Nodes

– Random graph generation

> Road Network Dataset:
– 1,861-19,096 Nodes

– OpenStreetMap data

> Synthetic Centrality Dataset:
– 8-256 Nodes

– Random Graph Generation

> Computing Cluster:
– 8 VMs, Intel Xeon Gold 6130, 16GB 

RAM

> Performance measured in 
training time & adaptability

Evaluation - Experimental Setup

10



> Single node is optimal up 
to 8,000 nodes

> Above 8,000, multi-node 
execution is required

> Multi-agent training cuts 
training time by 190%

Evaluation – Q-learning Shortest Path

11



> Performs well on 
small graphs

> Quadratically scaling 
as size grows – 
inefficient for large 
graphs

> High memory 
demands limit 
scalability

Evaluation – Closeness & Betweenness Centrality

12



> Handles small 
changes efficiently

> Outperforms static 
methods in single-
node removal

> Requires more 
significant 
retraining for larger 
topology shifts

Evaluation – Dynamic Graph Adaptability

13



> Shortest path performance gains on static and dynamic graphs; 
centrality still needs optimization

> MASS-enabled features significantly improved performance

> Multi-agent training → 190% reduction in training time

> Distributed reward window → faster convergence

> Dynamic hyperparameter tuning → self-optimizing agents

Conclusion – What We Achieved

14



Challenges:

> Scalability of centrality metrics

> Long training time for large graphs

> Necessity of hyperparameter fine-tuning for different graph types

Future Work:

> Graph Convolutional Networks (GCNs)

> Improved agent communication

> Online Q-learning for real-time updates

Conclusion - Challenges & Future Work

15



Questions?

Q&A

16



R. S. Xin, D. Crankshaw, A. Dave, J. E. Gonzalez, M. J. Franklin, and I. Stoica, “GraphX: Unifying Data-Parallel and Graph-
Parallel Analytics,” Feb. 11, 2014, arXiv: arXiv:1402.2394. Accessed: Jul. 19, 2024. [Online]. Available: 
http://arxiv.org/abs/1402.2394

G. Malewicz et al., “Pregel: a system for large-scale graph processing,” in Proceedings of the 2010 ACM SIGMOD 
International Conference on Management of data, Indianapolis Indiana USA: ACM, Jun. 2010, pp. 135–146. doi: 
10.1145/1807167.1807184.

M. Fukuda, MASS: A Parallelizing Library for Multi-Agent Spatial Simulation. [Online]. Available: 
https://depts.washington.edu/dslab/MASS/

M. Kipps, W. Kim, and M. Fukuda, “Agent and Spatial Based Parallelization of Biological Network Motif Search,” in 2015 
IEEE 17th International Conference on High Performance Computing and Communications, 2015 IEEE 7th International 
Symposium on Cyberspace Safety and Security, and 2015 IEEE 12th International Conference on Embedded Software and 
Systems, New York, NY: IEEE, Aug. 2015, pp. 786–791. doi: 10.1109/HPCC-CSS-ICESS.2015.222.

Zhiyuan Ma and M. Fukuda, “A multi-agent spatial simulation library for parallelizing transport simulations,” in 2015 
Winter Simulation Conference (WSC), Huntington Beach, CA, USA: IEEE, Dec. 2015, pp. 115–126. doi: 
10.1109/WSC.2015.7408157.

J. Woodring, M. Sell, M. Fukuda, H. Asuncion, and E. Salathe, “A Multi-agent Parallel Approach to Analyzing Large Climate 
Data Sets,” in 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, USA: IEEE, 
Jun. 2017, pp. 1639–1648. doi: 10.1109/ICDCS.2017.106.

J. Zhang and Y. Luo, “Degree Centrality, Betweenness Centrality, and Closeness Centrality in Social Network,” in 
Proceedings of the 2017 2nd International Conference on Modelling, Simulation and Applied Mathematics (MSAM2017), 
Bankog, Thailand: Atlantis Press, 2017. doi: 10.2991/msam-17.2017.68.

References

17


	Slide 1: Applying Q-Learning Agents to Distributed Graph Problems
	Slide 2: About Me
	Slide 3: Distributed Systems Laboratory(DSL)
	Slide 4: Introduction - Why Do We Need Q-learning for Graph Problems
	Slide 5: Introduction - Our Research Goals
	Slide 6: Background – Traditional Graph Computing vs. Q-learning
	Slide 7: Related Work – How Q-learning Works 
	Slide 8: Implementation - Multi-Agent Spatial Simulation Framework
	Slide 9: Implementation - Multi-Agent Spatial Simulation Framework
	Slide 10: Implementation - Q-Learning in MASS
	Slide 11: Evaluation - Experimental Setup
	Slide 12: Evaluation – Q-learning Shortest Path
	Slide 13: Evaluation – Closeness & Betweenness Centrality
	Slide 14: Evaluation – Dynamic Graph Adaptability
	Slide 15: Conclusion – What We Achieved
	Slide 16: Conclusion - Challenges & Future Work
	Slide 17: Q&A
	Slide 18: References

