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1. Aims and contributions of our

paper

In our paper, we aimed at:
1. Develop a real-time detection framework for cache side-channel attacks (CSCAs) in cloud
environments.

2. Minimize system overhead while maintaining high detection accuracy.

Contributions of our study are fourfold:
1. Unified ML model detecting four CSCAs (Flush+Reload, Flush+Flush, Prime+Probe,
Spectre).
2. Feature engineering using Greedy Forward Selection and Pearson Correlation.
3. Hybrid ensemble model (Random Forest + XGBoost) with 96% accuracy and 11% false
alarm rate.
4. Intelligent Noise Addition mitigation strategy to reduce data leakage.




2. Motivation

This table highlights the key limitations of existing security approaches, including high false alarms,
inefficiency under load, and no real-time detection.

Approach Limitations
HPC-based models [1][2] High false alarms, limited to specific
attacks.
AES encryption [3] Ineffective under load conditions.
Unsupervised Deep Learning [4] No real-time detection.

These challenges emphasize the need for a more robust, efficient, and real-time detection solution leading to our
proposed model :

2 A unified real time detection and mitigation model for multiple CSCAs with minimal HPCs .




3.1 Methodology : Feature

Engineering

1. Data Collection:

*  Hardware Performance Counters (HPCs) sampled at 50ps intervals.

*  Benchmarks: Mastik [5], Xlate [6] (attacks), MiBench [7] (benign apps).
2. Feature Selection:

*  Greedy Forward Selection [81: Incremental addition of features for optimal accuracy.
cov(X;,Y)

v/var(X;) - var(Y) e

*  Pearson Correlation [9] p(i) =

p: is the Pearson correlation coefficient.
X.: input dataset of eventi (where1=1, ...,
Retain features with |p| > 0.4. 14).

Y: is the output dataset containing labels,
1.e., “attack” or “no attack™ in this case.
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3.1 Methodology : Feature

Engineering

3. Customized Features

- Reduced 14 HPCs to 4 critical metrics for real-time efficiency.

Original HPCs Customized HPCs
1 Cache-references, 8 Ll-icache-load-misses,
2 Cache misses, 9 LLC-misses, 1 LLC-misses,
3 Cpu cycles, 10 ITLB-load-misses, 2 Instructions,
4 Instructions, 11 LLC-store-misses, |::> 3 Branches,
5 Branches, 12 LLC-1loads, 4 Branch-instructions
6 Branch-misses, 13 DTLB-load-misses,
7 Ll-dcache-load-misses, 14 Branch-instructions

To derive the final dataset containing four key metrics, we followed a structured approach
consisting of three essential stages:

‘ Data Collection }—)Features Selection ———» Customized Features

Each step was designed to refine and enhance
the dataset, ensuring the most relevant and
insightful metrics were retained.




3.2 Methodology : Attack Detection

The algorithms used are :

1. Random Forest (RF) [10]: 92% accuracy, 24%
FAR.

2. XGBoost [11]: 93% accuracy, 24% FAR.
3. Hybrid Model (RF + XGBoost):

- Soft voting mechanism.
- 96% accuracy, 11% FAR.

|
‘ Training Data ‘

XGBoost RF

N7

Ensemble Model :
Soft Voting

i
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3.3 Methodology : Attack Mitigation

Algorithm: Intelligent Noise Addition for Attack Mitigation (INA-AM)

F .. . d- Input: Cache Hits H, Cache Misses M
or mltlgatlon we Opte . Output: Noise Cache Hits H’, Noise Cache Misses M’

- Intelligent Noise Addition (INA- 1. Start

. 2. Initialize noisy cache hits vector H’
AM) [ 12 ] : confuses attackers by 3. Initialize noisy cache misses vector M’
injecting noise into cache hits/misses. 4 heount « CountCacheHits(H)

5. mcount «— CountCacheMisses(M)
6. noise function «— ComputeNoiseFunction(H, M)
I“F“t o s T ] 7. For each cache hith in H
cache hits/misses. | (INA-AM ) _ 8. IF the noise function recommends noise to h Then

9, Add noise to h

10. AddhtoH’

11.  EndIf

12. End For

13.  For each cache miss m in M

) Dutpu_t . 14.  IF the noise function recommends noise to m Then

noisy cache hits/misses. 15 Add noise to m

16. AddhtoM’

17.  EndIf

18.  End For

19. Output H’

20.  Output M’

21. End




4.1 Results : Model Evaluation

BN Accuracy HN FAR

100

96
92 93
90 1
80
TO T
60
50
40
30 A
24 24

20 A

11
10 - T

Random Forest XGboost Hybrid Model

Accuracy and False Alarm Rate

Accuracy & FAR Comparison:

- Hybrid model outperforms individual classifiers (96% accuracy vs.
92-93%).

- FAR reduced from 24% to 11%.




4.2 Results : Model Evaluation

ROC Curves:
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- AUC =0.95 (No Load), 0.94 (Full Load).
- These two curves shows the model robust performance under
varying system loads.
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4. 3 Results : State-of-the-Art

Comparison

* Enhanced Detection: The proposed model detects threats using 4 CSCAs + stealth, outperforming existing
methods.

e Optimized Efficiency: It requires just 4 HPCs, compared to 11-12 HPCs in existing approaches.
* Superior Security: Achieves 0 bits of information leakage, whereas existing methods leak 189-345 bits.

Metric Proposed Model Existing Methods
Detection Range 4 CSCAs + stealth 1-2 CSCAs
HPCs Used 4 11-12
Information Leakage 0 bits 189-345 bits

Overall Improvement: The model offers better detection, lower resource usage, and higher
security, making it a more efficient and robust solution.
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5. Conclusion and Future Work

Conclusion:

*  We developed a unified machine learning model to detect four CSCAs: Flush+Reload,
Flush+Flush, Prime+Probe, and Spectre.

*  We optimized feature selection using Greedy Forward Selection and Pearson Correlation to
enhance detection efficiency.

*  We achieved 96% accuracy with an 11% false alarm rate using a hybrid ensemble model
(Random Forest + XGBoost).

*  We implemented Intelligent Noise Addition to mitigate data leakage and improve security.

Future Work:

1. Integrate deep learning for adaptive threat detection.
2. Scalability testing across diverse cloud architectures.

3. Long-term system maintenance strategies.
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