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In our paper, we aimed at:
1. Develop a real-time detection framework for cache side-channel attacks (CSCAs) in cloud 
environments.

2. Minimize system overhead while maintaining high detection accuracy.

Contributions of our study are fourfold:
1. Unified ML model detecting four CSCAs (Flush+Reload, Flush+Flush, Prime+Probe, 
Spectre).

2. Feature engineering using Greedy Forward Selection and Pearson Correlation.

3. Hybrid ensemble model (Random Forest + XGBoost) with 96% accuracy and 11% false 
alarm rate.

4. Intelligent Noise Addition mitigation strategy to reduce data leakage.

1. Aims and contributions of our 
paper 

3



➔ A unified real time detection and mitigation model for multiple CSCAs with minimal HPCs .

2. Motivation

Approach Limitations

HPC-based models [1][2]  High false alarms, limited to specific 
attacks.

AES encryption [3] Ineffective under load conditions.

Unsupervised Deep Learning [4] No real-time detection. 

This table highlights the key limitations of existing security approaches, including high false alarms, 
inefficiency under load, and no real-time detection.

These challenges emphasize the need for a more robust, efficient, and real-time detection solution leading to our 
proposed model :
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1. Data Collection:

• Hardware Performance Counters (HPCs) sampled at 50μs intervals.

• Benchmarks: Mastik [5], Xlate [6]  (attacks), MiBench [7] (benign apps).

       2. Feature Selection:

• Greedy Forward Selection [8]: Incremental addition of features for optimal accuracy.

• Pearson Correlation [9] : 

Retain features with |ρ| > 0.4.

3.1  Methodology : Feature 
Engineering

ρ: is the Pearson correlation coefficient.
X

i
: input dataset of event i (where i = 1, ... , 

14).
Y: is the output dataset containing labels, 
i.e., “attack” or “no attack” in this case.
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3. Customized Features

- Reduced 14 HPCs to 4 critical metrics for real-time efficiency.

3.1  Methodology : Feature 
Engineering

Original HPCs Customized HPCs

1 Cache-references,         8 L1-icache-load-misses,
2 Cache misses,             9 LLC-misses,
3 Cpu_cycles,               10 ITLB-load-misses,
4 Instructions,             11 LLC-store-misses,
5 Branches,                 12 LLC-loads,
6 Branch-misses,            13 DTLB-load-misses,
7 L1-dcache-load-misses,    14 Branch-instructions

1 LLC-misses,
2 Instructions,
3 Branches,
4 Branch-instructions

To derive the final dataset containing four key metrics, we followed a structured approach 
consisting of three essential stages:  

Each step was designed to refine and enhance 
the dataset, ensuring the most relevant and 
insightful metrics were retained.
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The algorithms used are :

1. Random Forest (RF) [10]: 92% accuracy, 24% 
FAR.

2. XGBoost [11]: 93% accuracy, 24% FAR.

3. Hybrid Model (RF + XGBoost):

   - Soft voting mechanism.

  - 96% accuracy, 11% FAR.

3.2  Methodology : Attack Detection 
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For mitigation we opted :

- Intelligent Noise Addition (INA-
AM) [12]: confuses attackers by 
injecting noise into cache hits/misses.

3.3  Methodology : Attack Mitigation
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Accuracy & FAR Comparison:

 - Hybrid model outperforms individual classifiers (96% accuracy vs. 
92-93%).

 - FAR reduced from 24% to 11%.

4.1  Results : Model Evaluation
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ROC Curves:

 

4.2  Results : Model Evaluation

 - AUC = 0.95 (No Load), 0.94 (Full Load).
 - These two curves shows the model robust performance under 
varying system loads.

10



4. 3 Results : State-of-the-Art   
Comparison

Metric Proposed Model Existing Methods

Detection Range 4 CSCAs + stealth 1-2 CSCAs

HPCs Used 4 11-12 

Information Leakage 0 bits 189-345 bits

● Enhanced Detection: The proposed model detects threats using 4 CSCAs + stealth, outperforming existing 
methods.

● Optimized Efficiency: It requires just 4 HPCs, compared to 11-12 HPCs in existing approaches.
● Superior Security: Achieves 0 bits of information leakage, whereas existing methods leak 189-345 bits.

Overall Improvement: The model offers better detection, lower resource usage, and higher 
security, making it a more efficient and robust solution.
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Conclusion:
• We developed a unified machine learning model to detect four CSCAs: Flush+Reload, 

Flush+Flush, Prime+Probe, and Spectre.

• We optimized feature selection using Greedy Forward Selection and Pearson Correlation to 
enhance detection efficiency.

• We achieved 96% accuracy with an 11% false alarm rate using a hybrid ensemble model 
(Random Forest + XGBoost).

• We implemented Intelligent Noise Addition to mitigate data leakage and improve security.

Future Work:

1. Integrate deep learning for adaptive threat detection.

2. Scalability testing across diverse cloud architectures.

3. Long-term system maintenance strategies.

5. Conclusion and Future Work
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