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◼ Topics of research interest: 

⚫ Smart-city applications (smart agriculture, smart industry, and digital twin)

⚫ Information-centric wireless sensor network w/ actuator and visual node

⚫ MmWaves, blockchains, non-terrestrial, secure, and green network

⚫ Delay-doppler (double selective) for joint radar (sensing) and commun.

⚫ Wireless communications and cross-layer design

◼ For more information, please see my website: 

⚫ https://www.cross-layer.com/



Background

◼ A wireless sensor network (WSN) is an essential technology supporting smart-
city application services.

◼ In these applications, sensor nodes (SNs) are heterogeneously interconnected 
to collect and distribute data, e.g.,  real-time streaming and high-capacity data.
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◼ These should be accommodated in the 
same ecosystem [1].

◼ Millimeter-wave wireless communications 
(mmWaves) [2] and information-centric 
networking (ICN) [3][4] have been gaining 
attention.

⚫ The data include various demands and priorities.

⚫ These transmission method is designed on the 
basis of several protocols.



Wireless Communications for Smart-city Deployment

◼ Cellular and satellite telecommunication are the de facto wireless system for 
smart-city applications; however, it is costly to deploy.

◼ Low-power wide-area networks (LPWANs) are the primary solutions; however, 
they can only transmit a few small data packets within 100-Hz bandwidth 
below the 1-GHz band.

◼ Short-range personal area networks (PANs) based on IEEE 802.15 standards are 
traditionally used for WSNs, but can be used as a network inside a regional area.  
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Wireless Local Area Network (LAN) (Wi-Fi)

◼ Another global communication system, wireless local area networks (WLANs) 
based on IEEE 802.11 standards, known as Wi-Fi.

◼ WLANs can provide extensive and various connectivity for computers, tablets, 
smartphones, and IoT devices.

◼ Wi-Fi-based networks are the optimal candidate, because they have several 
advantages: low-cost wireless modules are readily available, they can be based 
on IP networks, and the multiple radio-frequency bands can include unlicensed 
bands, such as 920 MHz and 2.4, 5, 6, and 60 GHz, without regulations. 
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MmWave-wave Wireless Communications (mmWaves)

◼ Millimeter-wave wireless communications (mmWaves) have been recognized 
as a global frontier in future mobile technologies, enabling multi-gigabit data 
transfer over vast spectrums.

◼ MmWaves have been used as an alternative to backhaul, both short-range and 
high-capacity indoor communications, or radar and astronomy.

◼ Compared with the radio-frequency bands that are currently widely used, the 
extra attenuations for the link budget of mmWaves. 

⚫ Rain, oxygen, and hydrophilic materials (e.g., trees, leaves, and humans) 
must be considered.

⚫ 60-GHz radio waves are particularly affected by the rain and oxygen.

◼ Related studies include the applicability of mmWaves for outdoor applications 
to provide several hundred meters of coverage. 
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[16] Terragraph, https://terragraph.com/ (retrieved: Jan. 2025).

Terragraph

◼ IEEE 802.11ay supports mesh networks, which can provide a cost-efficient 
broadband wireless solution to replace fiber optical networks in city areas.

◼ As a commercial product, Meta (Facebook) offer Terragraph [16].

◼ To the best of our knowledge, there have been few experiments regarding 
mmWave long-distance data transmissions; hence, we believe that the 
contribution of this paper is valuable.



Evolution of Networking Technology

◼ In the current network system, data are gathered and stored on the cloud 
servers, and the users find and obtain them from the central locations.

⚫ With the growth of data consumers, network bandwidth will be too tight.

◼ The content delivery network (CDN) technique is widely used to improve 
network congestion, especially in the area around the central servers.

⚫ CDN servers are distributed to specially deliver the cached (copied) data.

⚫ Users can obtain data from the geographically closest servers.
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ICN Meets IoT Framework
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◼ Future network architecture shifts the focus from host locations to data.

◼ ICN is a data-oriented network protocol that focuses on content delivery.

⚫ The search engines (or domain name systems) reply with the IP address for 
the keyword, and the users obtain the data based on the address.

⚫ Peer-to-peer (P2P) networks find the node with the data, and the user 
directly communicates with the node based on the address.



Information-Centric Wireless Sensor Network (ICWSN)
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◼ The data are named instead of an address, enabling end-users to discover and 
obtain the data via names, resulting in network abstraction.

◼ The named data are handled separately by individual content units, i.e., they 
can be self-certified and encrypted. 

⚫ ICN scheme contributes to improved security, in-network caching schemes 
are also available, i.e., the data are copied and stored in cache memories 
on network nodes to facilitate further data retrieval.

⚫ Peer-to-peer (P2P) networks find the node with the data, and the user 
directly communicates with the node based on the address.
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ICN Platform: Cefore
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Caching data is kept in cache memory for 300 seconds, 
and the old data is deleted according to the FIFO rule.

◼ In our prototype mmICWSN [5][6], we used Cefore [17] 
for the middleware of the ICN platform. 

◼ Cefore is an open-source CCNx-based ICN platform 
available on Linux (Ubuntu). 
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Pending Interest Table (PIT) 
Content Store (CS)



Experimental Environment

◼ The prototype mmICWSN was implemented not 
limited to a specific application service but designed 
on the basis of a reliable and zero-touch design [7].

◼ The device was designed to be waterproof since it 
would be placed in outdoor.

◼ The devices were deployed at a community center 
and school in Nogata City (Fukuoka, Japan). 

⚫ Community center and school are three-story 
buildings, and they were placed on the rooftops.
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Radio 

frequency
58.32 GHz with 2.16 GHz

Transmission 
power

56 dBm (EIRP)

Antenna

Phased array antenna with 
dish

Gain: 40 dBi
 Scan range: ±3°, Beam 

width: ±1°
Dimensions 355 × 355 × 315 mm

Weight 3 kg

Specification of Terragraph device



Experimental Environment

◼ Across the wireless link, there are 
a river, road, bridge, and car park.

⚫ The river is the Onga River and 
the riverside area is well 
maintained and covered with 
grass and aquatic plants. 

⚫ During the experiment, the 
river surface was flat and calm, 
with no significant waves.
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⚫ Kanroku Bridge crosses the river and is connected to the main national road.

⚫ Nogata City is an inter and suburban city between large cities (e.g., Fukuoka 
City and Kitakyushu City), but the amount of traffic is not dense.

⚫ The riverside area in front of the community center is used as a car park, 
and several dozen cars were parked there.

⚫ In accordance with the three-dimensional map provided by the National 
Geographical Institute, their altitudes are respectively 7.5 and 16 m, and 
straight-line distance is 1 km.

◼ The factors affecting mmWave propagation were not observed. 



Field Views of Experimental Field
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Field views at the community center Field views at the school

◼ The mmICWSN node devices were connected to the BeMap MLTG-CN/LR [19] as 
the mmWave Terragraph device.

⚫ These devices communicated with each other, and the coverage range was 
up to 1 km, according to the catalog specifications.

[19] BeMap, https://www.bemap.co.jp/ (retrieved: Jan. 2025).

Terms Values
Radio 

frequency
58.32 GHz with 2.16 GHz

Transmission 
power

56 dBm (EIRP)

Antenna

Phased array antenna with 
dish

Gain: 40 dBi
 Scan range: ±3°, Beam width: 

±1°
Dimensions 355 × 355 × 315 mm

Weight 3 kg

Specification of Terragraph device
⚫ The Modulation and Coding Scheme (MCS) 

index was automatically set as 9. 

◼ The weather was cloudy during the experiment, i.e., 
the possibility of rainfall attenuation to degrade the 
mmWave propagation could be ignored.



Field Views of Experimental Field

◼ The parameter settings regarding 
adaptive rate control in the IEEE 
802.11ay.

⚫ IEEE 802.11ay-based Wi-Fi 
systems uses the pre-defined 
as MCS settings, including 
modulation method, code 
rate, and repetition code

16

Index
Modulation 

method
Code rate Repetition

Data rate 
(Mbit/s)

1 BPSK 1/2 2 385
2 BPSK 1/2 1 770
3 BPSK 5/8 1 963
4 BPSK 3/4 1 1,155
5 BPSK 13/16 1 1,251
6 QPSK 1/2 1 1,540
7 QPSK 5/8 1 1,925
8 QPSK 3/4 1 2,310
9 QPSK 13/16 1 2,503

10 16-QAM 1/2 1 3,080
11 16-QAM 5/8 1 3,850
12 16-QAM 3/4 1 4,620

MCS settings in single carrier physical mode

◼ Photo was taken behind the dish 
antenna on the school rooftop 
toward the community center.

⚫ The community center is 
located at the red marking, 
where the opposite node was 
placed.

⚫ The line of sight between the 
transmitter- and receiver-side 
nodes can be clearly maintained. 



Experimental Environment

◼ Experiment was conducted for different scenarios:

⚫ Antennas were matched: Both elevation and 
azimuth angles were appropriately adjusted.

⚫ Antennas were mismatched: They were offset.
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Terms
Antennas are 

matched
Antennas are 
mis-matched

Radio 
channel

Ch 2
(60.48 GHz with 2.16 GHz)

RSSI -64 dBm -62–63 dBm
MCS settings 8–9 6–9
Beam index 30 / 30 30 / 5

Physical-layer information in experiment

◼ The status information of the physical layer for these scenarios is summarized.

⚫ Antenna’s front space is divided into a grid pattern in terms of elevation- 
and azimuth- angles. Each sub-region is assigned a beamforming index.

⚫ The most central beam direction on the antenna surface is when the 
beamforming index is 30. 

◼ Network performance:

⚫ TCP and UDP throughput were measured using iPerf3.

⚫ We measured TCP/UDP throughput at every 1 s interval for 90 s.

⚫ The CUBIC algorithm were used in TCP evaluation.

⚫ The nodes in the community center and school were assigned as server 
and client nodes.

◼ ICN performance:

⚫ We measured the ICN throughput using Cefore.



Experimental Results

◼ TCP performance:

⚫ Average throughput was 941 and 94.4 Mbit/s for when the antennas were 
matched and mismatched, respectively. 

⚫ The antenna is a parabolic dish type; thus, even a few degrees of angle 
misalignment can cause significant throughput degradation.

⚫ For TCP congestion control, the average congestion-window size was 1.26 
and 0.967 Mbytes; hence, there was a 39.3% difference.

⚫ In the curve when the antennas were matched, several attempts were 
made to increase the congestion-window size.
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Experimental Results
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Throughput    CW size    Throughput   Packet-error probability

 TCP performance       UDP performance

◼ UDP performance:

⚫ Average throughput was 902 and 93.3 Mbit/s for when the antennas were 
matched and mismatched, respectively. 

⚫ In the curve when the antennas were matched, there were regions where 
UDP throughput temporarily decreased.

 This reason is that automatic retransmission requests and forwarding-
error-control mechanisms are omitted.

 The results of TCP throughput indicate no degradation because the 
congestion-control mechanism is available and useful works. 

⚫ Packet-error probability for UDP transfer; the averages were 0.0294 and 
0.903 for the matched and mismatched scenarios, respectively.



Experimental Results

◼ ICN performance:

⚫ Average throughput was 16.1 and 15.8 Mbit/s for when the antennas were 
matched and mismatched, respectively. 

⚫ The ICN throughput was significantly smaller than that of TCP/UDP because 
Cefore has a bottleneck in terms of implementations and structures.

 If the transmission bandwidth is set as the maximum value, the failure 
probability of data registration, storage, and transfer becomes worse.

⚫ Average jitter was 525 and 534 μs for the two scenarios, respectively.

◼ The performance of TCP/UDP/IP layers was not affected by that of the ICN layer.

◼ We could obtain sufficient network performance for mmICWSN in an actual city.
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Conclusion and Future Work

◼ Contribution:

⚫ We evaluated the feasibility of the network performance in the TCP, UDP, 
and ICN protocols with mmICWSN.

⚫ From the experimental results, we found that it was necessary to improve 
the ICN throughput by modifying the Cefore settings, and the antenna 
placement for mmWaves was sensitive to a few degrees of angle.

⚫ Through the demonstration of the mmWaves experiment, the developed 
system could be applicable to long-distance wireless transmission in an 
actual city.

◼ Future work:

⚫ We plan to deploy mmICWSN for practical smart-city applications, such as 
smart agriculture.

⚫ In detail, we will develop a new ecosystem that supports an on-demand and 
real-time video and image forwarding platform for a common demand for 
smart-agriculture applications.
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