SmartPool: An Automated CPS for Real-Time Water Quality Management

Team

- André Ávila
- André Costa (presenter) ٠
- André Soares
- **Daniel Rodrigues** lacksquare
- Eduardo Ramos

- João Alves •
- João Matos
- Lourenço Gonçalves
- Luís Cabral •
- Marco André

(i)Presenter: André C. Costa @ FEUP **Contact:** up201905916@up.pt Supervisors: Prof. Rui Pinto; Prof. Gil Gonçalves

About Me

André Correia da Costa

Master's student in Informatics and Computer Engineering at FEUP.

I'm a researcher at INESC TEC, where my work is focused on the development of **Asset Administration Shells** (AAS) and the integration of communication protocols in industrial environments.

Agenda

1	0
2	0
3	0
4	0
5	0
6	0
7	0

Context & Motivation
Problem Statement
Research Goals & Contributions
SmartPool Architecture
Proof-of-Concept
Limitations
Vision for the Future

Context & Motivation

Potential for an **Autonomous** System

Problem Statement

Manual Checks

Traditional pool maintenance relies on manual water parameter checks.

Time-Consuming

Scheduling manual checks can take days.

Financial Inefficiency

Manual maintenance can lead to financial inefficiencies.

Research Goals & Contributions

Autonomous Pool Maintenance Solution

Improve Time and Financial Efficiency

- **Remove** the need for **manual & local** pool parameters checks.
- Autonomous calibration of parameters.
- **Digital adjustments** of optimal Pool parameters.

SmartPool Architecture

User

Control through Digital Replica

Middleware → Eclipse BaSyx

User SmartPool

Proof of Concept

Proof of Concept: Hardware Components

Sensors

- Temperature sensor
- Ultrasonic sensor (to measure Water Depth)
- Light Intensity sensor
- Camera

Actuators

- Light Indicator (LED)
- Water Depth Indicator (LED)
- Alarm

Proof of Concept: Middleware

The Constant of the second	1			
SmartPoolAAS https://example.com/ids/Asse	🔹 🛅 SensorData	Submodel	SensorData	
	B Temperature	Property	Identification (ID): https://example.com/ids/Submodels/SensorData	
	B WaterDepth	Property	Description:	
	b LightIntensity	Property	en A Submodel containing 4 Properties, each one	
	CameraFeed	File	Kind: Instance	
	 Actuators 	Submodel	- Temperature	MOT
	LightIndicator	Ргорегту	xs:float 22.06	Sourc
	B WaterDepthIndicator	Property	WaterDepth	
	🔒 Alarm	Property		
			LightIntensity xs:double 238.03	MQT1 Sink
			CameraFeed	Chink
			File /tmp/basyx-temp124958478180!	

Proof of Concept: SmartPool Web Application

Beyond the Basics SmartPool

Enhancements

Camera Integration

A camera connected to the Raspberry Pi, with machine learning algorithms to identify people, dogs, or cats.

External Device Interaction

Allows interaction of external devices like personal computers with Raspberry Pi, if within the same network.

Limitations

High Initial Setup Cost Initial Investment in Hardware.

To send data over the Internet.

Hardware Maintenance

Maintenance is still required on hardware devices.

Vision for the Future

Feasibility in Real-World Environments

Evaluate system performance in **varied climates** and **unpredictable** conditions.

Expansion to Different Pool Types & Industry Sectors

Adapt SmartPool Solution for **public** and **saltwater** pools, as well as potential industrial and **aquaculture** applications.

Integration with AI for Predictive Maintenance & Optimization

Further studies on machine learning models for predictive maintenance and automated anomaly detection.

Conclusion

Automated CPS for Water Quality

Feasibility Demonstrated

Proof of concept utilizes sensors, actuators, and middleware.

Future Expansion

integration.

SmartPool system automates real-

time water quality management.

Towards a **Smarter**, **More Sustainable Pool Management** System!

Potential for diverse pool types and AI

Thank You!

