

On the FullMesh Path Selection of Multipath TCP Video Streaming

Yosuke Komatsu, Dirceu Cavendish Daiki Nobayashi, Takeshi Ikenaga

Kyushu Institute of Technology, Japan komatsu.yousuke620@mail.kyutech.jp {cavendish@net.ecs, nova@ecs, ike@ecs }.kyutech.ac.jp

- Yosuke Komatsu
 - First-year master's student
 - Kyushu Institute of Technology, Japan
 - komatsu.yousuke620@mail.kyutech.jp
- Field of Study
 - MPTCP
 - Transport Protocol

Video Streaming

Vetwork Engineering Research Lab

- Examples of video streaming platforms
 - Youtube, Netflix, Amazon Prime Video ...etc.
- TCP connection
 - Use a single interface
 - New connections need to be made when switching interfaces
- MPTCP connection
 - Multiple interfaces can be used simultaneously
 - Increased communication stability by eliminating the need to switch interfaces
 - Enables more bandwidth than TCP
 - Effective because many devices now have multiple interfaces, wireless and wired

About MPTCP

- MPTCP control multiple TCP connection
- ◆Added connections are called "Subflow" by MPTCP
- The Receiver (Sender) can change the number of interfaces and subflows
- ◆The Sender decide a subflow to send a packet following MPTCP scheduler

MPTCP Scheduler and Head of Line Blocking

- MPTCP scheduler selects a subflow with several methodsRTT, Retransmission etc.
- ◆Head of Line (HOL) blocking can occur by MPTCP scheduler
- Preventing HOL blocking leads to high performance in applications

Video Streaming by MPTCP

Network Engineering Research Lab

- Video streaming needs stable throughput
 - Low throughput, latency variation and HOL blocking cause interruptions to video streaming
- MPTCP is required adaption to any topology, connection path, path quality
- We conduct MPTCP video streaming with and without a shared bottleneck and propose an efficient scheduler

Fullmesh Test Experiment with Default Scheduler

- Testbed experiment
 - Establish fullmesh routes on all interfaces used by each other (A-C, A-D, B-C, B-D) → Emulators are shared bottleneck links
- Emulator setting
 - BW: 3Mb/s, Packet loss rate: 0.1%, RTT: 120ms
- Video values
 - Bitrate: 5.24Mb/s, Playout time: 6min
- Congestion control
 - **CUBIC, BBR**
- Evaluate video quality (Picture discard, Buffer undefflow) results in five experiments

Video Quality of Default scheduler

Network Engineering Research Lal

BW: 3Mb/s, Packet loss rate 0.1%, RTT 120ms

- ◆BBR had good video quality
- CUBIC caused degradation of video quality
- Congestion control has a big effect on video quality

Client's Downlink Throughput

- ◆In BBR, all subflows use the bandwidth fairly, but in CUBIC they are competing for it
- MPTCP in fullmesh requires consideration of shared bottleneck links

About Default Scheduler #1

- Select the subflow with the shortest transfer time
- Transfer time is calculated from the total packet size in the send buffer and the pacing rate
 - Pacing rate: Packet transmission rate

About Default Scheduler #2

letwork Engineering Research Lab

- ◆Transfer times for Subflow1 and Subflow2 are "Y/X [s]" and "Y/2X [s]"
- Add new packets to Subflow2's send buffer because Subflow2 can send all packets the fastest

Problems with Fullmesh by Default Scheduler

letwork Engineering Research Lab

- Buffering delay increases on the bottleneck link when each subflow over-transmits packets to the bottleneck link
- Delayed transmission of packets that should have arrived first
- If the scheduler continues to add new packets, they will also be affected

Approach against a Shared Bottleneck

Network Engineering Research La

- Limit the send buffer size for subflows
- Unknown if shared bottleneck link exists immediately after communication starts
- However, it is possible to assume that the packet size of the packets sent with an ACK is the appropriate bandwidth for the subflow

Proposed Method

Vetwork Engineering Research Lab

- ➤ Bottleneck aware scheduler
 - Added send buffer size limit to Default scheduler

- Benefits
 - Subflow selection by transfer time can avoid head-of-line blocking
 - Prevent over-transmission to shared bottleneck links that occurs in fullmesh connections

Bottleneck aware Scheduler #1

etwork Engineering Research Lab

- The initial value is 500 ms of the pacing rate
- Each subflow updates its value from its own minimum RTT (minRTT) and smooth RTT (sRTT)
 - \blacksquare sRTT < 2 * minRTT ...①
 - \blacksquare sRTT $\ge 2 * minRTT ... 2$
 - $2 \rightarrow 1 \dots 3$

Bottleneck aware Scheduler #2

Network Engineering Research Lal

- ♦ sRTT < 2 * minRTT ... 1
 - Select the larger value of the following
 - Previously used value
 - Twice total packet size of completed transmissions from the previous subflow selection phase to the current selection phase

Bottleneck aware Scheduler #3

letwork Engineering Research Lab

- ♦ $sRTT \ge 2 * minRTT ... ②$
 - Maintain previous value
- \bullet 2 \rightarrow sRTT < 2 * minRTT ...3
 - Select the smallest value of the following
 - •1 second of initial pacing rate
 - Previous value

Experimental Environment (Fullmesh)

- Testbed experiment
- Video values
 - Bitrate: 5.24Mb/s
 - Playout time: 6min
- Emulator setting
 - BW limitation: 3Mb/s
 - Packet loss rate: 0.1%
 - RTT: 60ms, 120ms

- Congestion control
 - **CUBIC**
 - BBR
- MPTCP scheduler
 - Default
 - Bottleneck aware (proposed scheduler)

Experimental Scenario and Evaluation Index

- Experimental scenarios
 - Fullmesh
 - •1... BW: 3Mb/s, Loss rate: 0.1%, **RTT: 60ms**
 - •2... BW: 3Mb/s, Loss rate: 0.1%, **RTT: 120ms**
- Evaluation index
 - Video quality
 - Picture discard
 - Buffer underflow
 - Network quality
 - Number of Out-oF-Order(OFO)
- Each scenario was conducted 5 times

Compared Results (Fullmesh-1)#1

- Prevents video quality degradation when using CUBIC
- The number of retransmissions and the impact of OFO remain almost the same

Compared Results (Fullmesh-1)#2

- BBR results similar to Default scheduler
- CUBIC reduces throughput fluctuations
- Prevents over-transmission on bottleneck links, resulting in better video quality

Network Engineering Research Lal

The proposed method maintains the same network quality as the Default scheduler

Compared Results (Fullmesh-2)#1

- The proposed method has good video quality regardless of congestion control
- Prevented degradation of video quality even with long delays

Compared Results (Fullmesh-2)#2

- BBR results similar to Default scheduler
- CUBIC suppresses throughput fluctuations
- Buffer size limitation avoids over-transmission even with long delays

Network Engineering Research Lal

The proposed method maintains the same network quality as the Default scheduler

Experimental Environment (Parallel)

- ◆Testbed experiment
 - Can only connect with A-C and B-D
- All videos, etc. used are the same as in the Fullmesh environment
- Experimental scenario
 - BW: 3Mb/s, Loss rate: 0.1%, **RTT: 60ms**
- Scenario was conducted 5 times

Compared Results (Parallel)

Vetwork Engineering Research Lab

- Video quality is good in both schedulers
- ◆Same level of network quality impact
- The proposed method performs better than the Default Scheduler with and without shared bottleneck links

Conclusion and Future Work

Network Engineering Research Lab

- MPTCP video streaming over shared bottleneck link
- Default scheduler degrades video quality when shared bottleneck links exist and subflows compete for bandwidth when using CUBIC
- The proposed method avoids over-transmitting to the shared bottleneck link and achieves good video quality by limiting the transmission buffer size
- Select subflows according to environment with or without shared bottleneck links
- Future work includes confirming the stability of the proposed method and further improving it through experiments in real environments.