
Graph Algebras

Pavel Loskot
pavelloskot@intl.zju.edu.cn

The Tenth International Conference on Advances in Signal, Image

and Video Processing (SIGNAL 2025)

March 09 – March 13, 2025, Lisbon, Portugal

Pavel Loskot, ZJU-UIUC©2025 1/32

About Me

Pavel Loskot joined the ZJU-UIUC Institute as Associate Professor in January 2021. He

received his PhD degree in Wireless Communications from the University of Alberta in Canada,

and the MSc and BSc degrees in Radioelectronics and Biomedical Electronics, respectively,

from the Czech Technical University of Prague. He is the Senior Member of the IEEE, Fellow of

the HEA in the UK, and the Recognized Research Supervisor of the UKCGE. In autumn 2024,

he was elected the IARIA 2025 Fellow.

In the past nearly 30 years, he was involved in numerous industrial and academic collaborative

projects in the Czech Republic, Finland, Canada, the UK, Turkey, and in China. These projects

concerned wireless and optical telecommunication networks, and also genetic regulatory

circuits, air transport services and renewable energy systems. This experience allowed him

to truly understand the interdisciplinary workings, and crossing the disciplines boundaries.

His current research focuses on mathematical and probabilistic modeling, statistical signal

processing and classical machine learning for multi-sensor data in biomedicine, computational

molecular biology, and wireless communications.

Pavel Loskot, ZJU-UIUC©2025 2/32

Objectives

Explore modeling abstractions

• algebraic manipulations of mathematical objects
→ assume graphs as nearly implicitly or explicitly ubiquitous objects

• move from numerical (quantitative) to semantic computations

• define dynamic systems involving graph sums and products
→ auto-regressive modeling

Topics

1. Algebraic structures and algebras

2. Graph sums, products, and rewriting

3. Algebraic graph theory and
autoregressive graph modeling

Pavel Loskot, ZJU-UIUC©2025 3/32

Mathematics-Engineering Gap

Engineering

• pragmatic, design oriented

• things driven

• complexity becoming an issue

• increase use of math models

• increase use of abstractions

• large pool of engineers

Mathematics

• pure vs. applied, but always rigorous

• concepts driven

• study of abstractions

• specialized skills/knowledge

• favorite areas: bio-med, finance

• small pools of mathematicians

Opportunity

• adopt common/advanced math concepts for “easy” use in engineering

• go beyond calculus and numerical computations

• allow working with advanced math objects, structures and models

Pavel Loskot, ZJU-UIUC©2025 4/32

Focus of This Talk

Informally

• algebras with arithmetic rules used extensively in numerical computations
→ arithmetic operations involve numbers representing numerical values

• can explore arithmetic rules for semantic manipulations of math objects
→ capture the structure and geometric shapes

Algebras

• define the laws of computation for numbers (number systems)

Abstract algebras

• manipulate algebraic (e.g. numeric and geometric) objects

Specific goals

• assume models where scalar values are replaced with graphs

• explore abstract algebraic operations involving graphs
→ graph sums and products
→ graph transformations

• eventually
→ generalize these concepts to other mathematical objects
→ assume mixture models combining math structures and numerical values

Pavel Loskot, ZJU-UIUC©2025 5/32

Basic Algebraic Structures

Semi-group (S ,+)

• closed and associative w.r.t. operator ‘+’

Monoid (S ,+)

• a semi-group with neutral element, i.e., a+ z = a ∀a ∈ S

Group (S ,+)

• a monoid with inverse element, i.e., a+ ā = z ∀a ∈ S

Abelian group (S ,+)

• commutative w.r.t. operator ‘+’, i.e., a+b = b+a

Ring (S ,+,∗)

• (S ,+) is commutative group and (S ,∗) is semi-group

• distributive, i.e., a∗ (b+ c) = a∗b+a∗ c ∀a,b,c ∈ S

Field (S ,+,∗)

• ring with (S \ {0},∗) being a group

Pavel Loskot, ZJU-UIUC©2025 6/32

Basic Algebraic Structures (cont.)

Examples

• (Z,−) is not semi-group (not associative)

• (N,+) is semi-group (not group, since no 0)

• (N0,+) is monoid (no inverse element)

• (Z,∗) is monoid (no inverse element)

• (Z,+) is group

• (Zn,+) is group

• (Zn,∗) is monoid (no inverse element for 0)

• (Zn \ {0},∗) is group if n is prime

• (Z,+,∗) is ring (not field)

• (Zn,+,∗) is finite ring and finite field if n is prime

Galois field GF(pk)

• modulo p arithmetic

• non-zero elements of GF(pk)

form multiplicative cyclic group

• GF(22) = {0,1,α,1+α}

Pavel Loskot, ZJU-UIUC©2025 7/32

More on Algebraic Structures

Groups

• homomorphism from (G, ·) to (H,∗) is φ : G 7→ H

φ(g1 ·g2) = φ(g1)∗φ(g2) ∀g1,g2 ∈G

• the sum (g1+g2)p
= g

p

1
+g

p

2
for ∀g1,g2 ∈ GF(p)

• special groups
→ cosets, finite cyclic groups, abelian groups

Rings

• generalizes fields
→ multiplication need not be commutative
→ multiplicative inverses need not exist

• special rings
→ semi-ring, near-ring, commutative ring, division ring, Lie ring

Lattices

• partially ordered sets, pairs of elements have unique supremum and infimum

• examples:
→ power set: supremum is union, infimum is intersection
→ natural numbers: supremum is LCM, infimum is GCD

Pavel Loskot, ZJU-UIUC©2025 8/32

More on Algebraic Structures (cont.)
Modules

• generalizes vector spaces with scalar fields
→ assume commutative/non-commutative rings instead of fields

• modules are additive abelian groups
→ multiplication is distributive over addition

• assumed in commutative algebras
→ closure and absorption properties of additions and multiplications (ideals)

• assumed in homological algebras
→ homological functors, chain complexes, category theory

Algebras over a field

• general algebraic structure

• a vector space equipped with a bilinear product
→ field of elements with addition, (scalar) multiplication, and set of axioms

Pavel Loskot, ZJU-UIUC©2025 9/32

Maps

Injection: Bijection: Surjection: –

injective & injective & non-injective & non-injective &

non-surjective surjective surjective non-surjective

Inverse maps

right-inverse f −1
R

: Y 7→ X ⇔ f (f −1
R

(y)) = y for ∀y ∈ Y

left-inverse f −1
L

: Y 7→ X ⇔ f −1
L

(f (x)) = x for ∀x ∈ X

bijection f : X 7→ Y ⇔ f (f −1
R

(y)) = f −1
L

(f (x))

composition (f ◦g)−1 ⇔ g−1 ◦ f −1

Maps as binary relations

• key properties: uniqueness, symmetry, composition

Pavel Loskot, ZJU-UIUC©2025 10/32

Graph Concepts

Graphs

• collection of edges E over vertices V
→ |V | can be infinite

• edges can be generalized to k-simplexes

Graph (topological) embedding

• representation of G on a surface (manifold)
→ arcs representing edges cannot intersect
→ the surface is a union of regions (faces)

• any finite graph can be embedded in Euclidean space R3

→ a planar graph can be embedded in Euclidean space R2

Path decomposition

• a sequence of vertex subsets
→ all edges cross neighboring subsets

• path-width
→ size of largest subset minus one
→ closely related to tree-width and
tree decomposition

Pavel Loskot, ZJU-UIUC©2025 11/32

Graph Concepts (2)

Value assignment

• permutation invariance of vertices

fff (xxx) = fff 0+

I∑

i=1

fff i(xxxi)+

I∑

i, j=1
i, j

fff i, j(xxxi, xxx j)

+ · · · +

I∑

i=1

fff {1:I}\i(xxx)

f3(sss(3)) f2(sss(2))

f1(sss(1))

fN(sss(N))

fN−1(sss(N−1))

fi(sss(i)) f1,i(sss(1)
,sss(i))

f1,3(sss(1)
,sss(3))

f1,N−1(sss(1)
,sss(N−1))

Graph matching

• finding a similarity between (sub-) graphs

• exact matching: graph isomorphism

• inexact matching
→ best possible

• methods: pairings and optimizations

P. Loskot, “Analyzing Complex Models by Orthogonal Input-Output Decompositions,” In Proc.

Explainability, 2024.

Pavel Loskot, ZJU-UIUC©2025 12/32

Graph Concepts (3)

Graph edit distance (GED)

• measure of similarity between two graphs

• smallest cost of changing one graph into another
→ insert/delete/substitute vertices and edges

GED example

1. remove edge between any 2 colors

2. change the 3rd color to white

3. add a vertex of now missing color

4. connect new vertex to white vertex

Graph isomorphism (GI)

• exact (sub-) graph matching

bijection: V(G1) 7→ V(G2) s.t. adjacency

• structural similarity (isomorphism classes) of many other math objects

• key challenge
→ finding algorithms within given complexity classes

(GI-complete and GI-hard problems)

Pavel Loskot, ZJU-UIUC©2025 13/32

Matroids

Definition

• matroid M consists of
→ finite ground set E and a collection of independent subsets I of E

• maximal I is a basis of the matroid
→ generalization of basis in linear algebra (span, rank, . . .)

• a circuit is a minimal dependent subset of E
→ a cycle in graph representation of the matroid

• connection to linear algebra
→ E is subset of a vector space

Direct sum

• disjoint unions E1∪E2 and I1∪I2

• matroid M that cannot be written as
M1+M2 is connected or irreducible

• allows partitioning into a sum of
matroids and maximum matching

Example matroid

• ground set {x,y,z}

• {y,z} and {x,y,z} dependent (in red)

• other subsets independent (green)

Pavel Loskot, ZJU-UIUC©2025 14/32

Arithmetic Graph Sums

Task

• given graphs G1(V1,E1) and G2(V2,E2), define G1+G2

Solution

• shared vertices: V1∩2 = V1∩V2

• zero-pad adjacency matrices to the same size, A1,2 ∈ {0,1}
n×n

• permute adjacency matrices to have the same ordering of shared vertices

• the sum is a multi-graph (integer additions)

[A1]i j+ [A2]i j = [A1+2]i j ∈ {0,1,2}
n×n

• the sum is a graph (or-additions)

[A1]i j∨ [A2]i j = [A1+2]i j ∈ {0,1}
n×n

Pavel Loskot, ZJU-UIUC©2025 15/32

Clique Graph Sums

Task

• attach two or more graphs at their cliques of equal sizes
→ analogous to connected sums (set sums) of manifolds in topology

Solution

• reuse (share) the cliques
→ identify matching vertexes in these cliques
→ delete all (or some of) the clique edges

• k-clique sum
→ the shared clique to have (or at most) k vertices

• more than two graphs ((G1+G2)+G3)+G4 · · ·

• alternatively, a way of decomposing graphs into simpler graphs
→ usually constrained by closure under minor graph operations

Pavel Loskot, ZJU-UIUC©2025 16/32

Graph Products

Strategy

• multiply two graphs in a sense of combining vertexes
→ assume Cartesian product of two vertex sets

• then define rules to add edges (connecting combined vertices)
→ special rules for treating self-loops

Notations

• G1 =G2: the graphs are naturally isomorphic

• product is a binary mapping:

G1(V1,E1) × G2(V2,E2) 7→G12(V12,E12)

→ may or may not be commutative

• connectivity (graph edges)
→ edge: (a1 ∼ a1) ∈ E1, no edge: (a1 / b1) < E1

→ edge: (a2 ∼ a2) ∈ E2, no edge: (a2 / b2) < E2

• connectivity between combined vertices
→ (a1,a2) ∼ (b1,b2), or, (a1,a2) / (b1,b2)

• cardinalities: v1,2 = |V1,2| and e1,2 = |E1,2|

b1

a1

c1

G1

b2

a2

c2

G2

Pavel Loskot, ZJU-UIUC©2025 17/32

Cartesian Graph Product
Definition of G1�G2

• vertices are Cartesian product V1×V2

• edges (a1,a2) ∼ (b1,b2) if and only if:
a1 = b1 and a2 ∼ b2, or, a1 ∼ b1 and a2 = b2

→ |(a1,a2) ∼ (b1,b2)| = v1e2+ e1v2

• also known as box product
(the box indicates that four edges are
from Cartesian product of two edges)

Properties

• relationship of adjacency matrices

AAA1�2 = AAA1⊗ IIIn2
+ IIIn1

⊗AAA2 ∈ {0,1}
(n1n2)×(n1n2)

• commutative: G1�G2 =G2�G1

→ may not hold for labeled graphs

• associative: (G1�G2)�G3 =G1� (G2�G3)

Problems

• constructing regular graphs as Cartesian products

• Cartesian factorization of graphs (finding prime factors)
→ e.g. Cartesian product is bipartite iff each factor is bipartite

Pavel Loskot, ZJU-UIUC©2025 18/32

Tensor Graph Product
Definition of G1×G2

• vertices are Cartesian product V1×V2

• edges (a1,a2) ∼ (b1,b2) if and only if:
a1 ∼ b1 and a2 ∼ b2

→ |(a1,a2) ∼ (b1,b2)| = 2e1e2

• known as direct, Kronecker, categorical,
cardinal, relational product, or conjunction

Properties

• relationship of adjacency matrices

AAA1×2 = AAA1⊗AAA2

→ Kronecker (tensor) product

• tensor products do not have unique factorization, but they do have the same
number of irreducible factors
→ e.g. if either G1 or G2 is bipartite, then so is their tensor product

• tensor product is a category-theoretic product in the category of graphs and
graph homomorphisms
→ imposes certain structures of categories

Pavel Loskot, ZJU-UIUC©2025 19/32

Lexicographic Graph Product

Definition of G1 ·G2

• vertices are Cartesian product V1×V2

• edges (a1,a2) ∼ (b1,b2) if and only if:
a1 ∼ b1 or (a1 = b1 and a2 ∼ b2)
→ |(a1,a2) ∼ (b1,b2)| = v1e2+ e1v2

2

Properties

• if edges represent order relations, then edges of G1 ·G2 represent the
corresponding lexicographic order

• general non-commutative: G1 ·G2 ,G2 ·G1

• distributive law: (G1+G2) ·G3 =G1 ·G2+G2 ·G3 (‘+’ represents union)

• complements: G1 ·G2 =G1 ·G2

• identities exist for:
→ independence number
→ clique number
→ chromatic number
. . .

Pavel Loskot, ZJU-UIUC©2025 20/32

Strong Graph Product
Definition of G1⊠G2

• vertices are Cartesian product V1×V2

• edges (a1,a2) ∼ (b1,b2) if and only if:
(a1 = b1 and a2 ∼ b2) or
(a1 ∼ b1 and a2 = b2) or
(a1 ∼ b1 and a2 ∼ b2)
→ |(a1,a2) ∼ (b1,b2)| = v1e2+ e1v2+2e1e2

• union of Cartesian and tensor products

Properties

• clique number of strong product equals the product of their clique numbers

• some (many) properties shown only for specific instances of graphs
→ and specific (specialized) attributes

Problems

• decompositions of planar graphs into strong products
→ can be used to show many properties of planar graphs

Pavel Loskot, ZJU-UIUC©2025 21/32

Other Graph Products

Modular graph product

• vertices are Cartesian product V1×V2

• edges (a1,a2) ∼ (b1,b2) if and only if:
(a1 ∼ b1 and a2 ∼ b2) or
(a1 / b1 and a2 / b2)

• often used to reduce subgraph
isomorphism into problem of
finding graph cliques

Rooted graph product

• take |V1| copies of G2, and identify all a1 ∈G1

with the root vertex of i-th copy of G2

• rooted product of G1 =G2 is a subgraph of
their Cartesian product

• mainly assumed for trees
→ rooted product of two trees is another tree

Pavel Loskot, ZJU-UIUC©2025 22/32

Other Graph Products (cont.)

Zig-zag graph product

• defined for regular graphs, denoted as G1 ◦G2

• replaces each vertex of G1 with a copy (cloud)
of G2

→ then zig-zag interconnects these clouds

• approximately inherits size of larger G1 and
degree of smaller G2

• if G2 is expander graph, then the expansion is
only slightly worse than expansion of G1

Expander graphs

• a finite, undirected multi-graph with a few constraints

• used in construction of sparse graphs to expand their vertices, edges or
other properties (e.g. spectral expanders)

• every connected graph is expander, but with different expansion parameters
→ good expander has low degree and yields high expansion

• used extensively to construct graphs (networks) with desired properties

Pavel Loskot, ZJU-UIUC©2025 23/32

Other Graph Products (cont.)

Replacement graph product G1 rO G2

• incorporates another graph product

• the aim is reduce the degree of a graph while
maintaining its connectivity

• regular graphs with neighbors ordering

• vertices are Cartesian product V1×V2

• edge rules a bit more complicated

Corona graph product G1 ◦G2

• incorporates another graph product

• choose G1 as the center graph

• take |V1| copies of G2

• each vertex in G1 is attached to each vertex
in one copy of G2

Pavel Loskot, ZJU-UIUC©2025 24/32

Summary of Graph Products

https://en.wikipedia.org/wiki/Graph_product

Pavel Loskot, ZJU-UIUC©2025 25/32

Other Graph Operations

Task

• transform input graphs into output a graph
→ define unary (transforms) and binary operators

• directed and undirected graphs, weighted and unweighted graphs

• to be used in graph calculus, algebras, generative grammars etc.

Elementary operations

• simple editing of vertices and edges
→ e.g. add, delete, merge, split (cf. GED)

Graph powers

• if G has adjacency matrix AAA, then Gk has
adjacency matrix AAAk

• different from a sequence of products
G×G× · · ·

Unary graph transformations

• reverse, minor, dual, complement, medial, quotient, Mycielskian

Pavel Loskot, ZJU-UIUC©2025 26/32

Other Graph Operations (cont.)

Graph rewriting

• rules for transforming a host graph G1 into a replacement graph G2

→ often defined algorithmically

• can be restricted to a matched subgraph pattern
→ pattern matching requires solving the subgraph isomorphism problem

• can be refined by exploiting labeling

Applications of graph rewriting

• describe non-stationary dynamic system
→ set of system states varies in time

• graph language with grammars
→ enumeration of all graphs

• graph model of a system
→ graph optimization

Abstract rewriting systems

• generalization of graph rewriting

• rules to transforming (reducing) sets of objects and their relations
→ also allow rewriting the rules themselves

Pavel Loskot, ZJU-UIUC©2025 27/32

Other Graph Operations (cont.)

Binary graph operations

• (disjoint) union G1∪G2 and intersection G1∩G2

• joints G1∇G2

• graph sums and products

Graph composition

• series-parallel graphs with two terminal vertices

• formed recursively by two simple operations
→ parallel composition
→ series composition

• other such operations can be defined
→ (non-) commutative operations
→ generalizations of recursive constructions

Application of graph SP composition

• designing and analyzing circuits
→ network flows

Pavel Loskot, ZJU-UIUC©2025 28/32

Algebraic Graph Theory

Spectral theory of graphs

• using linear algebra to study properties of matrix representations of graphs
→ adjacency and Laplacian matrices
→ eigenvalues and eigenvectors defined by the characteristic polynomial

• the eigenvalues represent the graph spectrum
→ a multiset of eigenvalues

Key properties

• the graph spectrum is invariant of vertex ordering

• the graphs with the same spectrum are isospectral
→ isomorphic graphs have the same spectrum
→ isospectral graphs does not have to be isomorphic

Applications of graph spectrum

• graph signal processing
→ eigen-decomposition is a DFT

• problems in topology and geometry

• studying and designing networks
→ flows and capacity, connectivity, synchronization, . . .

Pavel Loskot, ZJU-UIUC©2025 29/32

Algebraic Graph Theory (cont.)

Group theory of graphs

• various forms of symmetry, transitivity, and regularity

• can be related to graph spectra

Graph invariants

• the invariants can be:
→ true/false indicators
→ numbers: positive integers, real values
→ sequence (vector) of numbers
→ polynomials

• can be additive or multiplicative
→ assuming disjoint union of graphs G1 and G2

P(G1) + P(G2) = P(G1∪G2)

P(G1) × P(G2) = P(G1∪G2)

• if G1 =G2 (isomorphic), then P(G1) = P(G2)

→ opposite statement may not be true
→ opposite statement can be used to identify G1 ,G2 (non-isomorphism)

Pavel Loskot, ZJU-UIUC©2025 30/32

Graph Signal Processing

Auto-regressive modeling

• 1D signal filtering

st−1 = z−1st, h(z) = h0z0
+h1z−1

+ . . .+hN−1z−(N−1)

• graph filtering

ssst−1 = AAA−1ssst, h(AAA) = h0AAA0
+h1AAA−1

+ . . .+hN−1AAA−(N−1)

• shift-invariance
h′(z)→ zh(z), h′(AAA)→ AAAh(AAA)

Graph Fourier transform

sssout = AAA sssin, AAA = UUU−1
ΛΛΛ UUU

︸︷︷︸

GFT

UUUsssout = h(ΛΛΛ)UUU sssin

P. Loskot, Tutorials on Graph Signal Processing, SIGNAL 2021 and 2022.

Pavel Loskot, ZJU-UIUC©2025 31/32

Graph Signal Processing (cont.)

Generalization

1. signals themselves are graphs

2. graphs can be rewritten between time-steps

Simple case

• given AAA, BBB, and SSS 0

SSS t+1 = AAASSS t+BBB, t = 0,1,2, . . . ⇒ SSS t = AAAt

(

SSS 0−
BBB

III−AAA

)

+
BBB

III−AAA

With rewriting

• account for adding/removing/reordering vertices

SSS t+1 = R [AAA] ·R [SSS t]+R [BBB] , t = 0,1,2, . . .

• consequently
→ AAA and BBB must also be rewritten

• becomes graph filtering problem
→ structure and numerical values over that structure

• the key is to define R[·] rewriting operators

Pavel Loskot, ZJU-UIUC©2025 32/32

Take-Home Messages

Present numerical modeling techniques

• numerical values arranged as vectors and matrices
→ locally in case of manifolds

• models of dynamic systems
→ auto-regressive modeling and calculus

A new generation of semantic modeling

• define models involving arithmetic operations over mathematical objects
→ sums and products as basic binary operations
→ various unary transformations

This talk

• considered graphs as mathematical objects

• outlined different graph sums and products

• discussed graph rewriting as a class of unary transformations

• mentioned autoregressive graph filtering

Future applications

• semantic models may be naturally interpretable (machine learning)

• bring key results and ideas from applied/basic math into engineering
→ geometry, topology, algebras, category theory etc.

Thank you!

pavelloskot@intl.zju.edu.cn

Pavel Loskot, ZJU-UIUC©2025

Recommended Resources

Graph operations (quick overviews and key results)

https://en.wikipedia.org/wiki/Graph_operations

https://en.wikipedia.org/wiki/Graph_product

https://en.wikipedia.org/wiki/Graph_rewriting

Books (there are many other such books)

Algebraic Concepts (selected applied math topics for SP/ML)

https://www.iaria.org/conferences2023/filesSIGNAL23/PavelLoskot_Keynote_

AlgebraicConcepts.pdf

https://www.iaria.org/conferences2024/filesDigitalSustainability24/

PavelLoskot_Keynote_IntroductionToCurves.pdf

