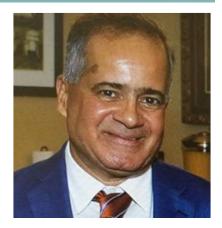


Internet 2025

Internet and Future Networking

CONTRIBUTORS

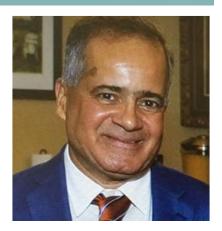
Lisbon March 2025


Moderator

Prof. Dr. Dirceu Cavendish, Kyushu Institute of Technology, Japan

Panelists

Prof. Dr. Oliver Michler, Technical University Dresden, Germany Dr. Jacek Plesnar, ABB, Poland


Prof. Dr. Philippe Martinet, INRIA Sophia Antipolis, France Dr. Martin Zinner, Technische Universität Dresden, Germany

Chair Position

Lisbon March 2025

\rightarrow Internet Evolution

→ Adaptibility: Withstand network protocols changes gratiously
→ Reliability: Prevent regional areas from blackouts
→ Trust: Networking infrastructure checks/balances

Internet Evolution

Networking waves (next gen syndrome)

- Connectivity, scaling and protocols:
 - Bridges/Routers, networking (bridging/routing) protocols, transport and session protocols.
- Backbone and applications:
 - OTNs: SONET/SDH; (D)WDM
 - World Wide Web, Internet Security (SSL), VoIP, Video streaming
- Fixed and mobile wireless
 - IPV6, wireless access points, 3GPP (2G-5G)
- Network Verticals (slice and dice)
 - Industrial, (sensor, medical) IoT
 - LEOs, DTNs

Future Networking

Lisbon March 2025

Internet Wishlist

- Adaptability
 - Access links: WiFi/Cellular/Satellite
 - Security: post quantum computing authentication/encryption (FIPS-203,204,205)
- Resiliency
 - Jan.2025: Taiwan/HK international undersea cable cut.
 - Nov. 2024: Baltic Sea cables were cut within hours. Lithuanian-Sweden and Finland-Germany affected.
- Trust
 - Equipment BAN: US, Australia, Japan, Taiwan

Panelist Position

Lisboa 2025

Cybersecurity and Quantum-Safe Networks

- It seems quantum based cryptoanalysis is not real threat yet due to technical challenges when it comes to quantum computing. How long will it last?
- Maybe there are some revolutionary discoveries in Math area which are bigger danger than quantum computation?
- Recently Microsoft announced Majorana 1 with new approach (topological qbits) will it bring some new threats to current day available cryptography?
- There are already released standards for PQC (Post Quantum Cryptography). Is it time to start using them?
- For traditional encryption we use dozens of years of experience in Math area which allows us to avoid some traps. Are we ready with math concepts used in PQC?
- Could it be that quantum computers will never be as good as we hope or may no suit to problems like cryptoanalysis?

Web3

Having in mind there is blockchain heavily involved – how do we cope with scalability and performance issues of this technology?

Jacek Plesnar ABB CTC Kraków, Poland

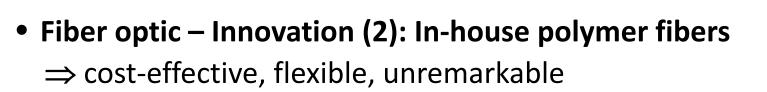
■ ... ?

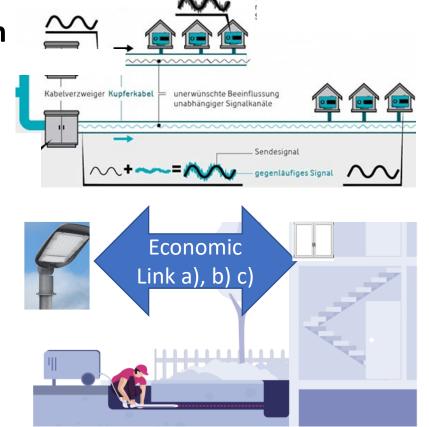
Panelist Position

Lisbon March 2025

- Internet and Future Networking \Rightarrow Classification, Rules and Services / SOTA
 - Performance: Bandwith / Availability / Robustness / Resilience
 - Application: Home / Industry / Business / Tourismen / Multimedia / ...
 - Location: Stationary / Portabel / Mobil
 - Topology: Router / Switch / Gateway / Software Defined Network
 - Coverage: Wide Area Network / Local Area Network / Piconet
 - Carrier: Twisted Pair, Fiber Optics, Polymer Fiber Optics, Powerline, Radio Frequency

Oliver Michler TU Dresden, Institute of Traffic Telematics

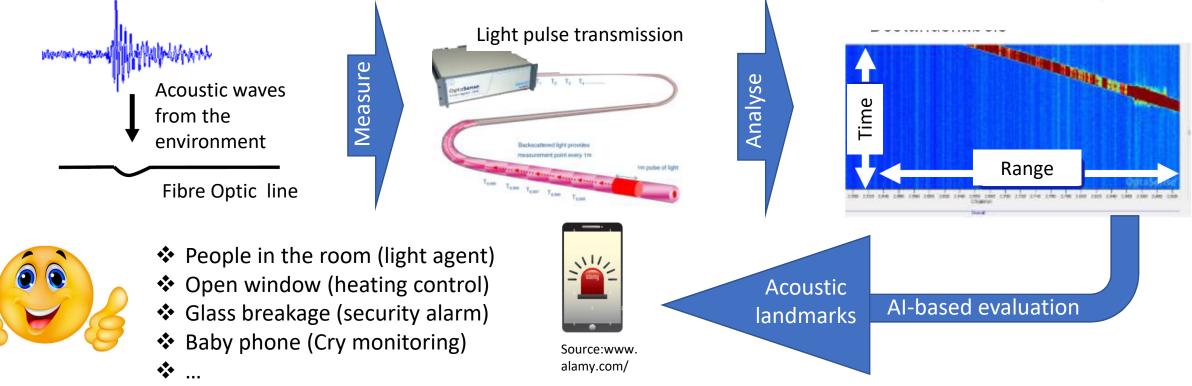

Lisbon March 2025


■ Internet and <u>Future Networking</u> ⇒ here: DSL- and Fiber in the Home with economic access, high data rate and new services

inimi

mm

- DSL Innovation: Vectoring with Interference correction ⇒ contrary signals
- Fiber optic Innovation (1): New access possibilities
 - \Rightarrow Air versus earth installation
 - a) 5G Mobil radio / Campus network
 - b) Directional radio link / mmWave
 - c) IR or LED-LiFi / Optical Comm.



■ Internet and <u>Future Networking</u> ⇒ here: DSL- and Fiber in the Home with economic access, high data rate and new services

• Fiber optic – Innovation (3): Acoustic Sensing for Home State Detection ⇒ software defined, Infrastructure efficient, AI suitable

Panel #4

- Internet and Future Networking (Next-Generation Internet Architectures, 6G and Future, Wireless Technologies, AI-Driven Autonomous Networking, Cybersecurity and Quantum-Safe Networks, Edge Computing and Decentralized Infrastructure, Metaverse, Web3, and Immersive Networking, etc.)
 - "Network architecture" is commonly used to describe a set of abstract principles for the technical design of protocols and mechanisms for computer communication.
 - The design of today's Internet technology was guided by an Internet architecture that was
 - developed in the 1970s.
 - Much of the coherence of the original architecture is being lost in a patchwork of technical ornaments, each intended to satisfy a particular new requirements.
 - Key Features of Next-Generation Networking,
 - a) Software-Defined Networking (SDN),
 - b) Network Function Virtualization (NFV),
 - c) Cloud Computing,
 - d) Artificial Intelligence and Machine Learning,
 - e) Security and Threat Mitigation,
 - f) Orchestration and Automation, and
 - g) Interoperability and Standardization

Martin Zinner Technische Universität Dresden

Panel #4

Intelligent Internet Architecture: Opportunities and Challenges

- The explosive growth in the number of Internet users and applications requires continuous optimisation of services provided by the Internet, such as deterministic security, high throughput, and low latency.
- However, these problems that the Internet architecture solves are also increasingly complex.
- Evolution of Internet architecture toward artificial intelligence (AI)
 - has achieved remarkable results (for example intelligent algorithms to detect malicious traffic, which is more effective against unknown attacks).
 - Dearning (DL) or deep neural networks (DNNs), have obvious advantages in complex problems, they require sufficient data and computing resources.
 - Partial devices (e.g., routers and switches) in the existing Internet, cannot provide the corresponding resources.
- The existing Internet architecture
 - requires the evolution of hardware foundation, software services and intelligent algorithms to support intelligence.
 - backward compatibility

OPEN DISCUSSION

Lisbon March 2025

Output highlights

<post Panel>