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1. Introduction
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Introduction

Visit to Asia

A,
Tuberculosis

[Tuberculosis or_cancer]

\

X—ray result Dyspnea

(a) Asia Network

Visit \ Tuberculosis | No  Yes
No 09 0.1
Yes 03 07

Table 1: Conditional probability of " Tuberculosis” given " Visit to Asia"
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(b) Gere (c) Gmcs

Figure 1: The sequence of structure learning with Asia data. The final result of
the learning is in Fig. 8. The numbers on edges indicate the order of edge
appearance.
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(a) GgHe (b) Marginal
structure

Figure 2: Effect of Marginal Information for Structure Learning
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(b) Marginal (c) Gumces
structure

Figure 3: Effect of Marginal Information for Structure Learning
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(b) Marginal (c) Gumces
structure

Figure 4. Effect of Marginal Information for Structure Learning
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2. Graphs and Markov Properties
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Graph Basics(1/2)

e Graph G =(V,E): Vis aset of nodes, E C V x V is a set of edges.
@ Induced subgraph: Ga = (A,EN (A x A)) for AC V.

08
@O—®
() 6 (b) Ga (c) Ga

Figure 5: Two types of subgraph of G on A = {1,2,3}.
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Graph basics(2/2)

e Separation: A and B are separated by S if all the paths from A to B

pass through S.
@ 6'9

@O—@—©®
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Markov Properties(1/5)

o Let X ={Xy,...,X,} be random variables with joint distribution P.
e For A= {1,2}, we will write X4 for (X1, X2).
o Let V =1{1,2,---,n}. For two random vectors X4 and Xg with

A,B C V and AN B = (), we say that X4 and Xg are stochastically
independent if

P(xauB) = fi(xa)f2(xB).

o Now suppose AN B # () and let AN B = C. We say that X4 and
Xp\ 4 are conditionally independent given Xc (or Xa\p L Xp\a|Xc) if

P(xa\8; xg\alxc) = f3(xa\B)fa(xp\a)-
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Markov Properties(2/5)

@ P is globally Markov w.r.t. G if:
Xa L Xg | Xs whenever A and B are separated by S in G.

e M(G): A set of distributions globally Markov to G.

e G is a perfect map of P if P € M(G) and all conditional
independencies in P are encoded in G.
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Markov Properties(3/5)

Pl(le' o 7X6)

Pi(x1,- -+, X6|x3, X6)

Sung-Ho Kim KAIST

(a) Gt

g1(x1, x2)g2(x1, x3)g3(x2, Xa) 86 (x3, X2 ) g7(x3, X5)
% g8(xa, X6) 8o (X5, X6 ).

g1(x1, x2)g2(x1, x3)g3(x2, xa) g6 (x3, xa) g7(x3, Xs5)
x gg(xa, X6)8o(Xs, x6)/ P(x3. X6)-
h1(x1, x2) ha(x2, xa) h3(x5)
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Markov Properties(4/5)

(b) G»
Po(x1,- -+, Xe) = gi(x1,x2)g2(x1, x3)g3(x2, Xa) g4 (X3, Xa, X5)
X g5(Xa, X5, X6)-
Po(x1,--- ,x6|x3,%6) = g1(x1,x2)g(x1,x3)g3(x2, xa)ga(x3, Xa, X5)

x gs5(Xa, x5, %6)/ P(x3, X6)-
= hi(x1, x2)g3(x2, xa) ha(xa, x5)
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Markov Properties(5/5)

O-6-6® O O6
bao botd barts
(c) G (d) G (e) Gs

Figure 6: Graphs of 6 nodes

Pi(x1, - ,x6) = gi(x1,x2)g(x1,x3)83(x2, xa)86(X3, Xa)g7(x3, X5)
x gs(xa, x6)8o (X5, X6)-
Po(xi, -+ ,x6) = gi(x1,x2)82(x1,x3)g3(x2, xa)ga(x3, Xa, X5)&5(xa, X5, X6)-
P3(x1, -+ ,x6) = &u1(x1,x2)8(x1,x3)83(x2, xa)g10(X3, Xa, X5, X )-
==> @ G; is a perfect map of P; for i = 1,2,3.

@ P, Py, and P are all in M(Gs).
@ Pi, Py arein M(Gy). P1 € M(Gy).
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Markovian Subgraphs

e Given G =(V,E) and A C V, define the Markovian subgraph
Ga= (A En):
(i,j) € Eaif (i,/) € E or there exists a (V' \ A)-path between i and j
in G.

@ Independence properties of marginal distribution P4 are fully captured
by GﬁA.

o If P is globally Markov w.r.t. G, then P4 is globally Markov w.r.t.
G_a. In other words, if P € M(G), then Pa € M(G_,).

(@) G (b) Ga (c) Ga
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Marginal Model Structure of a DAG

The ancestral set of A, An(A), is defined as
An(A) = | J an(a) U A.
a€cA

The moral ancestral graph of A is defined as the moral graph of the
induced subgraph of G on An(A), i.e., (Gan(a))"-

a Let G be a DAG with its set of nodes V' and let A1, A> and S be disjoint
subsets of V. Then Ay and A; are d-separated by S in G if and only if Ay
and Ay are separated by S in (Gan(a,us,us))™-

?Lauritzen S (1996) Graphical Models. Oxford, United Kingdom: Clarendon Press
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Moral Ancestral Graph

@g o/

(d) (e) Gan(a)
1
(f) (Gan(ay ((Gan(ay

Figure 7: A process from G to ((Gan(a))™)a with A = {2,3,4}
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The Markovian subgraph connects a DAG and its moral ancestral graph in
the following sense.

Proposition 1

If the distribution P of a random vector Xy, is faithful to a DAG G, then
Pa is globaly Markov wrt G 4.
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3. Factorization
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Factorization wrt Bayesian Network

We consider a set of random variables X = {Xy,---, X} where X;'s are
categorical or finitely discrete. A Bayesian network is a directed acyclic
graph G = (V, E) together with X and a set of conditional probability
tables © = {Hxi|xpac(i)} where exi‘xpac(i) = P(X, = Xi|Xpag(i) = Xpa(;(i))- We
say a probability distribution P on X factorizes over G if

P(X = x) = [T PO = il Xpa(i) = Xpa(i)):
i=1
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Factorization wrt UDG

We say a probability distribution P on X factorizes over an UDG G if for
each maximally complete subsets (i.e., cliques) ¢ C V, there exists a
non-negative function g. that depends on X; such that

PX=x)=J] &X=x)

o
e‘e
vt
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Bayesian network and moral graph

P(X = x) = P(x1)P(x2) P(x3|x1, x2) P(xa|x1) P(x5|x3, X3).
= fi(x1, X2, x3) f2(x1, Xa) f3(x3, Xa, X5)

Ve W
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4. Markov/Score equivalence
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Markov/Score equivalence

(Markov equivalence)® Two DAGs are Markov equivalent if and only if
they have the same skeletons and the same v-structures.

“Verma T, Pearl J (1991) Equivalence and synthesis of causal models. Uncertain
Artif Intell 6:220-227

Equivalent

Not Equivalent
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A property of a score function is defined as

Definition 3

(Score Equivalence)? A score function f is said to satisfy score equivalence
if for given data D and two DAGs G and G’ which are Markov equivalent,

f(G,D) = f(G', D).

?Heckerman D, Geiger D, Chickering D (1994) Learning bayesian networks: the
combination of knowledge and statistical data. Proc Uncertain Artif Intell 10:293-301

v
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5. Score Function
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Score function

The posterior probability of a DAG G given the data D and the marginal
structures G;'s can be computed by
P(G‘Da GAla"' 7Gk)
(8 P(D’Gaéb"' 7ék)

k
= P(G)P(D|G) [] P(GilG, D)
i=1

k
— P(6)P(D|G) [] P(GilGi. D). (1)
i=1
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Let p; be the edge-error probability for graph G;. Then
P(Gi|Gi, D) = p)'(1— pi)™ @

where m; = %|A;|(JA;| — 1) is the total number of the edges of the
complete UDG on A; and

§i=(EUE)—(ENE) (3)

is the size of the structural difference between G; and G;.
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If we apply the logarithm to the expression in Eq. (1),

log P(G|D, Gy, , Gy)

x log P(G)P(D|G +Z5 log £ +Zm, log(1 — p;)-

For structure learning, we use the marginally corrective Bayesian(MCB)
score:

MCB-score(G|D, G1, - - -, G)

k
=10g P(G)P(D|G) + Y dilog (4)
i=1

i

where the term log P(G)P(D|G) is a traditional Bayesian score function
such as the BDeu (Bayesian Dirichlet equivalent uniform) score.
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No Data Solution

Suppose that data are not available for p;'s. Then, assuming the Beta
distribution Beta(«;, 5;) as a prior distribution on p; in Eq. (2), the
probability P(G;|Gj, D) is obtained by
P(Gi|G;, D)
1
— [ P(GIGi (P
0

1
. mi— T(ai+Bi) a— L
= [ i e )

M)l (6)"
(o + Bi) T(aj + 0)T (mi 4 Bi — 0;) (5)
()M (B) Moi+Bi+m)
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We define the MCB score without estimation (MCB* score) as:

MCB*-score(G|D, Gy, , Gi)

= log P(G)P(D|G) 4+ 3K {log T(cvj 4 6;) + log I'(m; + B; — 6;)}.
(6)
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6. Experiment
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Visit to Asia

Y
Tuberculosis

[Tuberculosis or_cancer]

X—ray result Dyspnea

(a) Asia Network
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@

(b) G (c) Gue (d) Gumcs

Figure 8: The DAGs for Asia datasets; G is the true DAG, Gyc is the DAG
obtained by GHC and Gpcg is the DAG obtained by MCB-HC.
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Table 2: Marginal structures with the estimates p; of their edge-error probabilities

based on Asia data

Node 1 2 3 4
@@ © ©

% %@ ® ®| @) @

G; ® @
® ®

Di 0.05 0.19 0.02 0.08

Node
3 3
(4)

|4 “‘ .
@ ® ®

pi 0.05 0.06 0.04
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7. Summary

@ Structure learning is made in a sequential manner. Thus the order of
edge/arrow selection during the learning process affects significantly
the final model structure.

@ Pieces of marginal structure information are helpful in fixing local
structure errors during learning by using proper score function.

© The marginal model structures may be provided as directed or
undirected graphs for learning Bayesian networks. This is because the
graph separateness is the same between the two types of graph except
the nodes involved in v-structures.

@ The idea of using marginal structures for structure learning is a good
example of expanding the notion of prior information for statistical
learning. The prior information used to be parametric given in
probability distributions. But it could also be non-parametric as given
in marginal structures.

@ This line of research is in need of better score functions so that we
could use various types of marginal structure information.
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Thanks a lot for Your Attention!
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