
LLM-Based Design 
Pattern Detection

Christian Schindler and Andreas Rausch
Institute for Software and Systems Engineering

Clausthal University of Technology
Clausthal-Zellerfeld, Germany

e-mail: {christian.schindler | andreas.rausch}@tu-clausthal.de

1

The Seventeenth International Conference on Pervasive Patterns and Applications
PATTERNS 2025

April 06, 2025 to April 10, 2025 - Valencia, Spain



The presenter – Christian Schindler

• PhD Candidate at ISSE TU Clausthal
• Holds B.Sc. and M.Sc. (2014 and 2016)

• Research interests
• Software Engineering and AI
• Software Architecture and Design Patterns Detection

2



Motivation

• Design patterns 
• Proven solutions addressing recurring software design problems
• Define roles and responsibilities within a software structure

• Design Pattern Instance
• Concrete implementation where roles are realized by specific code artifacts 

(classes, interfaces, packages)
• Importance of Identifying Pattern Instances

• Enhances code quality and maintainability
• Simplifies code comprehension and communication among developers

• Challenges in Identification
• Patterns are typically implicit, with no direct language-level indicators (e.g. key 

words)
• Rarely explicitly annotated, making automated identification challenging

3



Research Aim

• RQ1: How can LLMs be leveraged to automatically detect and 
annotate design pattern instances in software codebases?
• RQ2: How good can LLMs detect and annotate design pattern 

instances in software codebases?
• RQ3: What are challenges/limitations faced by LLMs in 

identifying design pattern instances in code bases, and how can 
these be addressed

Source Code 
Snippet

Large Language 
Model

Detected
Design Pattern Instance

4



Data and Experimental Runs

• P-MARt [1]
• Peer-reviewed Design Pattern instances annotations
• from different open software systems

[1] Y.-G. Guéhéneuc, “P-mart: Pattern-like micro architecturerepository,” Proceedings of the 1st EuroPLoP
Focus Group on pattern repositories, pp. 1–3, 2007. 5



Design Pattern Details

• Composite Pattern

[1] Gamma, E., Helm, R., Johnson, R., & Vlissides, J. (1995). Design patterns: elements of reusable object-oriented 
software.

[1]

[1]

6



Experimental Design & Methodology

• One-shot learning
• LLMs ChatGPT 3.5 and GPT 4
• 14 runs with example pairs

https://github.com/schindlerc/LLM-Based-Design-Pattern-Detection 7



Results – Confusion Matrix

• ChatGPT 3.5 hallucinated
• Classes that do not exist in the Software System
• Roles that do not exist in the Design Pattern

• Results differ from role to role

8



Results – Confusion Matrix

• ChatGPT 4 did not hallucinate
• Results are all better than by ChatGPT 3.5

9



Results – ChatGPT 4

• Positive prediction class
• all roles of the design pattern

• Negative prediction class
• “No role”-class

10



Limitations and Future Work
• Limitations

• Results obtained from analyzing one design pattern—other patterns may yield different 
outcomes

• Evaluation included only two LLM models.

• Future Directions
• The presented approach can be consistently applied to other design patterns

-> validate the approach across multiple design patterns
• Provide LLMs with multiple annotated examples to improve context and accuracy.
• Investigate prompt refinement strategies for better detection accuracy.
• Explore hybrid approaches combining:

• Logical reasoning
• Static analysis
• Dynamic analysis

11



TLDL(isten);

• LLM-Based Design Pattern Detection
• Collected pairwise code samples annotated by other authors

• Provided one labeled code example as context in an initial prompt
• Applied the LLM to a second code sample to automatically detect and 

annotate the design pattern instance
• Minimal preprocessing required, streamlining the detection process
• Evaluated the accuracy by comparing the LLM-generated annotations 

to manually labeled ground truth data
• Observed improved detection performance with newer and larger 

LLM models

12


