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Childhood Absence Epilepsy (CAE)

Seizure(15-20sec) with loss of contact and absence of voluntary movement

https://lwww.cen-neurologie.fr/fr/files/videos/absence-video-eeg

18% of epilepsy in school-aged children

Incidence of 6.3-8.0 children per 100 000 per
year

May present Attention Deficit Hyperactivity
Disorder (ADHD)

Learning difficulties in around 30% of cases

Frequent seizures up to 200 seizures a day

Drug-resistant rate of about 30%



CAE: scalp EEG

Loss of consciousness

= Seizures associated with the 3-4

N Hz generalized Spike-Waves

WWWNWWMMWWMNMWMMMW
(GSW) patterns

e e NN NN NN e/ and asynchronous in the first 500
ms

;MWWMMWWVWWWWR n Polyspikes may also be observed

= GSW lasting 2-20 s

P = e -
e I | - > ] Bl | Page 10 ¢ |Gain 10 #|[ 10 PHO[5 [0 MPB[[TsoH: PRemovecC| Movavg ho ||| | NNESHE |B=——



CAE: challenge and objective

Thalamo-cortical Loop = Sensory or electrical stimulations could prevent
seizures
___—Areas of Cortex ___
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— _ W Challenge Detecting the seizure’s onset as early as
dacosianll — possible allows for prompt application of the stimuli
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CAE: ultimate goal

Develop an effective closed-loop system for aborting absence seizures

1. Onset early detection (arround 50ms) 4. Stop or reduce seizure activity
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CAE: iconography of a possible wearable device configuration

Operates directly on raw EEG data without any time/memory consuming preprocessing — embed the model in a

wearable device (Fig. 1) able to process EEG in real-time

Possible electronic device
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CAE: EEG dataset

Retrospective multicenter study conducted on children with CAE from august 2013 to 2019

Two French hospital centers — Necker-Enfants Malades Hospital, APHP (reference center for rare
epilepsies), and Saint-Brieuc Hospital

» Focused on children who experienced seizure onset at the age of 4 to 11 years

» Database encompasses a total of 117 children

= Average duration of the EEG recording session was at least 20 minutes

= Number of acquired electrodes, this latter varies between 11 electrodes to 19 electrodes

= Cumulative duration EEG recording is 2.75 days

= Sampling frequency of 256 Hz with a notch-filter of 50 Hz and a classical z-score standardization for all
channels



CAE: onset of the absence selzures annotation

Expert annotation of the onset of absence seizures

» Use a dedicated software platform “/V\/V\/\\M\
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CAE: early onset seizure detection workflow

Supervised procedure based on Deep Learning — two main phases are needed (training and testing)

Training stage

Seizure onset subset Proposed 1D-CNN

N _/- )
Non-seizure onset subset EQD%Q? = Construction of 12 bootstrap by randomly

(EEG background, full seizure,
muscle activity,

QRS-like patterns, ...)

picking 80% of patients for training and 20%

Testing stage it dnize for testing
Electrode 1 L earned 1D-CNN b = Non-patient specific detection strategy —
/ i\/ H/ WV % L\/ﬂ - based model . . ..
. y patients in the training set were excluded

from the testing set

Electrode N
Learned 1D-CNN




CAE: surface EEG description

Scalp EEG often contaminated by various physiological and non-physiological artifacts of non-interest

— Seizure Onset — Disconnection — Severe movement Eye movement
—— Seizure —— Muscle activity — ECG like activity — Onset tag
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CAE: reliable and complete training data set construction

Training stage
Raw data ~— Traini t
__ : _ C aining set )
\\Jeizure onset subs‘er‘___//
- C . ' Non-seizure onset subset
: Y (EEG background, full seizure,
muscle activity,
\(QRS-HKB patterns, )/’/
—— Seizure Onset —— Disconnection —— Severe movement Eye movement
—— Seizure —— Muscle activity —— ECG like activity Onset tag
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Rules

Two training subsets of — 2 seconds segments
« Seizure onset subset —» segment containing a
seizure onset tag
 Non-seizure onset subset — including three
subcategories (EEG background, physiological
and non-physiological artifacts, and full seizure
subset

Unbalanced training dataset —  emphasis the
balance inclusion of all non-seizure onset events

Excluded windows closer than 2 s to seizure onset
tags — maintain the independence of seizure-onset
segments and non-seizure-onset ones



CAE: training dataset (construction details and augmentation)

For each expert onset tag, 50 segments for the

Seizure onset tag Seizure onset are constructed — first segment
Artefact tag ) .
WWMM\/VWM == Seizure onset segments IS selected such that the onset tag IS located at
== Artefact segments L ]
— 5059 ents M‘ = Seizure segments 1.5 seconds within the 2 seconds window
¢ 20wmdow = Noise segments
T — segments
¢ e == “’bTE' = An artifact was tagged at the yellow position —
W‘M\/ =———1} 20 segments were picked from -2 to 2s around
""""""" ‘ each artefact tag

= ]_ 20 window -_—
segments —_—
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SEmEmE = 20 full seizure segments were picked starting

d
WWMVWWWMWW\/ —| from 2s to 4s after each seizure onset tag

o oo

Allowed zone for Forbidden zone for
noise selection noise selection

) = Noise and EEG background segments were
picked where seizure onset tags were not
present within 2s from the starting noise
segment



CAE: deep learning-based model architecture

//—i'raining set
\k _//
Why 1D CNN
Seizure onset subset Proposed 1D-CNN ] ]
e —_— E i = Analyze independently each electrode of the studied EEG
Non-seizure onset subset - E’% =3 HE : :
(EEG backsround, full seizure, — adaptability to various EEG recording protocols

touiscle activity, « EEG recordings obtained from different systems,

\QRS-hke patterns,;?/ . . .
hospital centers, and electrode configurations

Layer Type Output Shape: Param - Difference in the original sampling frequency could be
1 reshape 512x1 0 , )
2 Coialution 508x32 192 resampled to match the Ilearned model’s input
3 Average Pooling 254x32 0 :
4 Convolution 250x64 10304 reqUIrement
5 Average Pooling 125x64 0
6 Convolution 121x128 41088 )
7 Average Pooling 60x128 0 = Reasonable complexity
8 Convolution 56x256 164096
9 Average Pooling 28x256 0
1D brlAftEn 105 0 = 1D-CNN layers can be parallelized effectively on modern
11 Dense 256 1835264 _ o _
12 Dropout 256 0 hardware — operations within each layer are independent
13 Dense 128 32896
14 Dropout 128 0
15 SoftMax 1 129
Total parameters 2,083,969




CAE: detection phase
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CAE: evaluation metrics

Four metrics — Sensitivity, Precision, F1-score and FDR per hour (FDR/H)

. TP

Sensitivity =

TP+ FN
FDR = FP

FP+TP
Precision = rp =1—-—FDR
FP+TP

2 X Precision X Sensitivity

F1 — score =

Precision + Sensitivity

= True Positive (TP) — count of correctly detection of the seizure onset

» False negative (FN) — count of incorrectly detection of the seizure onset

» False Positive (FP) —» number of wrongly detected onset seizure (the limit for the detection was
fixed to 2 s from an expert tag)

» Fl-score — used to have the optimal compromise between these two scores



CAE: results - on the feasibility of a robust and universal detector

Result for all Bootstrap independently, for All EEG trace

Bootstrap | 1 2 3 4 5 6 7 8 9 10 11 12
F1-score 0.885 | 0.812 | 0.789 | 0.801 | 0.845 | 0.866 | 0.862 | 0.859 | 0.835 | 0.878 | 0.902 | 0.886
sensitivity | 0.929 | 0.856 | 0.825 | 0.860 | 0.824 | 0.876 | 0.959 | 0.926 | 0.855 | 0.950 | 0.893 | 0.937
precision 0.844 | 0.772 | 0.756 | 0.750 | 0.867 | 0.856 | 0.782 | 0.802 | 0.815 | 0.816 | 0.911 | 0.841
FDR/H 1.55 2.19 1.88 1.61 2.26 1.77 1.68 1.02 2.80 1.05 1.93 1.65
T 0.68 0.66 0.90 0.90 0.88 0.90 0.68 0.64 0.96 0.62 0.88 0.66
Pw 90 100 100 95 95 90 80 100 40 100 65 55
Pch 60 55 40 40 60 40 60 75 55 50 45 85

Optimize triplet [T, Pw, Pch] Fixe the best triplet per

bootstarp

Unique triplet [T, Pw, Pch] Fixe the best triplet that

whatever the explored bootstrap

v Unique triplet

» Sensitivity of 0.859 + 0.030, precision of 0.819 +
0.064, F1-score of 0.837 + 0.032, and FDR/H

I Optimize triplets

I Unique triplet
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CAE: results - influence of the sliding window

88 Unique triplet 0.5s shift ~ B8 Unique triplet 1s shift

a 10
. . 09,
Orange Window with a length of 2 s E %
038 =
Green Window with a length of 3 s 07 ,
b ' S Fl-score
v As expected . |
« Superior detection performances ;200'
are obtained with a 3 s windows o
sl
. 9% -15 -1.0 .5 0.0 0.5 1.0 1.5 2.
« Better mean detection delays with
a 2 second window =
= 100-
72
0 . . ‘ .
=20 1.5 1.0 0.5 0.0 0.5 1.0 1.5

Time (s)



results - influence of the electrode number

1 All Channels B 2 bipolar channels
N 4 monopolar channels B 2 bipolar channels retrained
1.0
0.91
0.8
0}
=
<
=
0.7
0.6
0.5 P Fl-score

Orange All available electrodes

Brown Four specific electrodes, two prefrontals [Fpl,Fp2], and two temporals [T3 ,T4] —» recommended to
wearable device

Red Bipolar montage Fpl-T3 and Fp2-T4 using classical trained model
Purple Bipolar montage Fpl-T3 and Fp2-T4 using retrained model on bipolar channel

v Performance of the retrained model with a four electrodes are quasi-equivalent to the ones of classical model



CAE: conclusion and perspectives

v" Novel deep learning methodology for the early detection of absence epilepsy seizures in children

v’ High detection accuracy with a minimized detection delay of absence epilepsy seizure onsets — about 0.522 s

v All results were obtained using human clinical EEGs with non-patient specific detection strategy — 117 patients

v' Good performances under wearable device configuration — 4 electrodes avoiding hair region

x Evaluation of the proposed methodology on wearable device EEG recordings

x Evaluation of the efficiency of a portable stimulator using our early onset detector on patients suffering from

absence epilepsy
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APP1: compromise between the number N of the consecutive 2 s time windows and the threshold Pw
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APP2: example of result that the detection algorithm found in different conditions

FP on spikewave events TN on artefacts —  Onsect detection tag

—— TN on spikewave events
m— TN on Healthy EEG

FP on established seizure — Onset expert tag

TP on seizure onset

Time (s)



