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1. Introduction

Why Hydrogen ?

▪ Hydrogen 

• Clean energy source, zero emissions of greenhouse gas

• Key to climate change & energy security

• Gas state at room temperature → bulky, flammable

• Therefore, requires advanced storage and transportation technologies

▪ Hydrogen storage vessels

• Classify into types 1 to 4 according to their materials

• Type 1 : entirely metals such as aluminum or steel

• Type 2 : metal (inner layer) + Glass Fiber  Reinforced Plastic (outer layer)

• Type 3 : metal (inner layer) + Carbon Fiber  Reinforced Plastic (outer layer)

• Type 4 : resin liner (inner layer) + CFRP(outer layer) [ Types of hydrogen storage vessels ] 

(a) Type 1      (b) Type 2        (c) Type 3         (d) Type 4
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1. Introduction

Type 1 Safety Challenges

▪ Metal vessels (Type 1) 

• Be exposed to fatigue, corrosion, cracking  

• Increase risk of leakage or explosion

• So, needs the periodic inspection and failure detection 

▪ Traditional inspection method

• Often require disassembly of the vessel, but it is not feasible during operation 

• So, Non-Destructive Testing (NDT) technologies, such as ultrasonic, radiographic and Acoustic Emission Testing (AET) 

are essential → provide real-time in-service safety diagnostics. 

▪ AE-Based failure detection method

• Effective method because AET analyses acoustic signals generated during failure

• Previous works : mostly focused on failure detection of Type 2 and Type 3 vessels. 

▪ So, this study proposes a deep learning-based failure detection method of Type 1 vessels. 
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2. Related Works

FEM-Based vs. AE-Based Research

▪ Research on hydrogen storage failure detection

• Divide into Finite Element Model (FEM)-based approaches and AE signal analysis methods.

▪ FEM simulates stress & fatigue under operational condition →  but limited for real-time diagnostics

▪ AET enables real-time failure detection → No need for complex numerical models

Current Limitations in AE-based Research

▪ Mostly focused on composite vessels (Type 2, 3, 4 with CFRP)

▪ However, Research on Type 1 vessels is lacking, despite their widespread use
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3. Background

Metal Failure Modes

▪ Elasticity : Stress exceeds yield strength → Reversible deformation (returns to original shape)

▪ Plasticity : Permanent deformation, Material does not return to original shape after stress removal

▪ Fracture :  Cracks or full breakage due to excessive stress, Irreversible structural failure

▪ Metals have sequential failure behavior according to fatigue level

[ Failure modes of Type 1 vessel ] 

(a) Elasticity                      (b) Plasticity                    (c) Fracture
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3. Background

Acoustic Emission Testing (AET) System

▪ NDT : Can be inspect without damaging the object 

→ Enables real-time failure detection

▪ AET overview

• Detects elastic waves from material deformation

• System components: 

→ AE Sensors (signal detection)

→ DAQ System (digital conversion)

→ Signal Analysis (interpretation)

▪ Data acquisition from AE sensors 

• Hit definition : use parameters such as threshold, Peak Definition Time (PDT), Hit 

Definition Time (HDT), Maximum Hit Duration (MHD) and Hit Lockout Time (HLT)

• Features extracted: 

✓ Time domain: Max amplitude, Rise time

✓ Frequency domain: Peak/Avg frequency [ Example of DAQ parameters for defining hits ] 

[ An example of an AET system ] 
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3. Background

Tensile Testing with AET

▪ Tensile testing:

• Process that pulls customized specimens using Universal Testing Machine (UTM)

• Here, stress applied until failure occurs

▪ AET-integrated test

• Monitors acoustic signals during loading

▪ Failure detection:

• Failures appear as inflection points on load graph

• By analyzing these inflection points, changes in the specimen properties 

can be understood. [ AET-based tensile test setup and load graph ] 

(a) Tensile testing                (b) Tensile-load graph and inflection point
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4. Failure Detection Methodology

Data Collection – Specimens

▪ Specimen materials : Stainless Steel (SUS304), Steel (SS400), Aluminum (AL6106-T6)

→ Widely used in hydrogen storage vessels

→ These specimens were fabricated in accordance with Korean standard KS B 0801 No. 5

Material Standard Example Images

Stainless steel SUS304

Steel SS400

Aluminum AL6106-T6

[ Example of specimens ]
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4. Failure Detection Methodology

[Tensile testing environment ]

Data Collection – Tensile testing

▪ Actuality, perform the tensile testing to induce material specific failures

▪ Testing setup 
• Equipment: Sintech MTS System

• AE Sensor: IDK-AES-H150 Resonant Sensor (1 MHz)

▪ Frequency filtering applied 
• Failures-related AE Signals occur mostly < 500 kHz

• Noise < 10 kHz removed
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4. Failure Detection Methodology

▪ Data acquisition
• Collect waveform data during tensile failure events

• Normal AE signals collected from Type 1 vessels 

under safe pressure

Data Collection – Data acquisition & labeling

Specimen Number of data

Stainless steel 333

Aluminum 2,056

Steel 44,792

Type 1 Storage (Normal) 69,243

[ Number of acquisition data ]

▪ Failure region labeling
• Failure occurs when tensile load exceeds yield strength

• Inflection points on the load-time curve help segment failure regions

• Elastic region: Stress < Yield Point (Minimal deformation)

• Plastic region: Stress > Yield Point (Large deformation)

• Fracture: Material fails to support load, Load drops sharply to zero

[ Tensile-load graph and failure region of each material specimens ] 

(a) Stainless steel                          (b) Steel                            (c) Aluminum
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4. Failure Detection Methodology

▪ Frequency features help reduce sensor-related variability 
→ Enables more generalizable classification 

▪ So, Discrete Fourier Transform (DFT) applied using FFT algorithm

▪ FFT :
• Perform every 1024 samples of  waveform

• Due to symmetry, only positive frequencies (512 samples) are used

• Scaled to range [0, 1] for normalization

Data Collection – Construction of frequency spectrum dataset

[ Example of waveform and frequency spectrum ] 

(a) Waveform of AE signal

(b) Frequency Spectrum
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4. Failure Detection Methodology

Augmentation

[ Number of train / validation / test dataset ] 

▪ Class imbalance can negatively affect model training and classification performance

▪ So, applied Synthetic Minority Over-sampling Technique(SMOTE) augmentation to the training set

▪ The table below shows the number of samples in each dataset after SMOTE augmentation

Failure Mode
Train

Validation Test
Before Augmentation After Augmentation

Elasticity 3,516 41,545 1,172 1,172

Plasticity 24,717 41,545 8,239 8,239

Normal 41,545 41,545 13,849 13,849

Total 69,778 124,635 23,260 23,260
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4. Failure Detection Methodology

Model Architecture

[ Proposed 1D-CNN multimodal model architecture ] 

▪ To classify failure states, Design one-dimensional convolutional neural network (1D-CNN)

▪ Finally, 12-Layer 1D-CNN and ResNet-50 1D-CNN network are built

▪ Also, Extracts features from both waveform and frequency spectrum for multimodal learning
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5. Experiment Result

Experimental Setup

▪ Deep Learning Model
• Use batch normalization and max-pooling (size: 2)

• Softmax activation for probability output

• Nadam optimizer for model training

▪ Performance evaluation scenarios
1. Dataset split : 60% training (SMOTE applied) / 20% validation / 20% test

2. Classes: Elasticity, Plasticity, Normal

3. Input : ① Waveform data only, ② Frequency spectrum data only, ③ Multimodal (combined waveform and frequency spectrum)

▪ Performance comparison with different model
→ 12-Layer 1D-CNN and ResNet-50 1D-CNN used as feature extractor to compare performance

→ Assessed benefits of shallower vs. deeper architectures
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5. Experiment Result

Experimental Results

Input Data Type Model Structure Accuracy Precision Recall F1-Score

Waveform Only
12-Layer 1D-CNN 98.87% 0.9603 0.9622 0.9613

ResNet-50 1D-CNN 98.83% 0.9602 0.9655 0.9628

Frequency Spectrum Only
12-Layer 1D-CNN 98.94% 0.9599 0.9712 0.9654

ResNet-50 1D-CNN 98.93% 0.9604 0.9624 0.9614

Multimodal
12-Layer 1D-CNN 99.19% 0.9723 0.9743 0.9733

ResNet 1D-CNN 98.89% 0.9590 0.9686 0.9637

[ Classification Performance ]

▪ Table below :  classification performance for models using different inputs and architectures. 
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5. Experiment Result

Experimental Results & Best Model

▪ Best result
→ 12-layer 1D CNN (Multimodal)

→ Accuracy: 99.19%, F1 Score: 0.9733

▪ Insights
• Multimodal model outperformed single-input models

→ Waveform-only and Spectrum-only performed lower

→ Confirms that combining waveform and spectrum is complementary and effective

• Shallower model (12-layer) outperformed deeper model (ResNet-50)

→ More complex architecture not required for this task
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6. Conclusion

Conclusion

▪ This study proposed a multimodal deep learning model for failure detection in Type 1 hydrogen storage vessels

• Collected AE signals via tensile tests → Dataset built for elastic, plastic, and normal regions

• Employ multimodal model used both waveform and frequency spectrum data

• Consequently, Achieved 99.19% accuracy and 0.9733 F1 score

• Demonstrated excellent performance in failure detection
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Thank you

kkb0320@postech.ac.kr

The Fourteenth International Conference on Smart Cities, Systems, Devices and Technologies, SMART 2025. 
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