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Evolution of Software Architectures IARIA

From Monoliths to Microservices:

e Traditional monolithic applications bundled all features together
e  Microservices break applications into smaller, independent components

Why Microservices?

e  Scalability: Each component can scale independently MONOLITHIC MICROSERVICES

e Agility: Faster feature releases and easier maintenance

SERVICE SERVICE

Challenges with Microservices:

e Managing communication between services APPLICATION

e  Ensuring security, resilience, and observability
SERVICE SERVICE
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Challenges in Scaling Microservices :IARIA:

e Communication Complexity:
o How do services discover each other dynamically?
o  What happens if one service fails?

e Operational Complexity:
o  Monitoring and debugging in a distributed system.
o  Managing dependencies and updates.

e Security Challenges:
o  Securing traffic between services.
o  Protecting sensitive data and ensuring compliance.

O

Security challenges

Communication complexity




What is a Service Mesh?

Why Service Mesh?

e Addresses day-two challenges, like securing service-to-service communication
e Asolution for managing communication, security, and observability in microservices
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re F res: /\
Core Features IARTA

e Control Plane: Manages configurations and policies. JASSEA
e Data Plane: Proxies like Envoy enforce those policies.

Key Capabilities:

Protocol conversion

Secure communication (Mutual Transport Layer Security - mTLS)
Intelligent traffic routing (e.g., retries, circuit breakers).
Observability (tracing, metrics, logs)

Service Discovery

Testing (A/B testing, traffic splitting)

Load balancing
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IARIA
Problems solved by Service Mesh AR

e Microservices communicate between them a lot

e The communication might cause a lot of problems and challenges:
- Timeouts

- Security

- Retries

- Monitoring
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Problems Solved by Service Mesh -IARIA
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Circuit Break

e Prevent cascading failures when service fails

service —_——
— 0
® A
service
e 8

Joyeaig




Istio

Why Focus on Istio?

One of the first and most widely adopted service mesh tools

Deep integration with Kubernetes, the leading platform for container
orchestration

e Backed by a vibrant open-source community

Istio in a Nutshell:

e Control plane manages configurations for routing, security, and
telemetry

e Data plane uses Envoy proxies to enforce policies and handle traffic

IARIA
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Istio

https://istio.io/



Istio Architecture

e Control Plane:

- Configures and manages policies for traffic routing, security, and
observability

- Key components: Istiod, Pilot, Citadel

e Data Plane:
- Envoy sidecars handle service communication
- Deployed alongside every service instance to enforce policies

e Integration with Kubernetes:
- Leverages Kubernetes’ APIs for seamless deployment and
configuration

IARIA
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Resilience with Istio

Key Resilience Features:

° Retries and timeouts ensure seamless communication
e Circuit breakers prevent cascading failures

Canary Deployments:

e  Gradually roll out changes by splitting traffic (e.g., 90%
to version 1, 10% to version 2)

Testing Failures:

e Fault injection simulates delays or outages
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Advanced Traffic Management IARIA

e Capabilities:
o  Route traffic based on weights, versions, or user segments
o  Automatically reroute traffic during outages
e Load Balancing Strategies:
o  Algorithms like round-robin and least connections
e Real-World Example: e emmmemememmmemmmmmemmmmmmmmmmmm————
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Security with Istio IARIA

Secure Communication:

e Mutual TLS encrypts and authenticates service communication.

Policy Enforcement:
e Define rules for which services can communicate and under what conditions.

Automation:

e Automates certificate issuance and rotation for mTLS.

Mutual TLS:

- Permissive Mode
- Secure Naming
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Observability with Istio

Tracing:
o  Open Telemetry agents and tools like, Jaeger or Zipkin visualize request flows
across services
Metrics:
o  Prometheus collects and aggregates performance data
Logs:
o  Centralized logs for debugging and audits
Use Case:
o  Debugging a cascading failure using distributed tracing and real-time metrics

IARIA



Challenges in Service Mesh Adoption EARIA)

Resource Overhead: Envoy sidecars consume CPU and memory

Configuration Complexity: Managing YAML files at scale can be daunting
Auxiliary Infrastructure: Tools like Kiali and Grafana add to the operational burden
Need strong theoretical and practical knowledge before implementing

Increase operational complexity
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Conclusion and Q&A

Takeaways:

e Service mesh simplifies managing microservices
e |[stio provides resilience, security, and observability
e Emerging trends like ambient mesh promise even greater efficiency
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