Optimizing Microservices:
Resilient Architectures for
Modern Workloads

Leveraging modern tools and techniques to build
fault-tolerant, secure, and observable systems

/\ SOFTENG 2025 Anuj Tyagi
Sr SRE - RingCentral Inc
CIARIA: NICE FRANCE anujtyagi.inbox@gmail.com

https://about.me/anujtyaaqi

https://about.me/anujtyagi

whoami

N\ Sr. SRE @ RingCentral Inc
AWS Community Builder
<> Mentor — SRE/DevOps Careers

% Open-Source Contributor

@ MS, Northeastern Univ. Boston

Evolution of Software Architectures IARIA

From Monoliths to Microservices:

e Traditional monolithic applications bundled all features together
e Microservices break applications into smaller, independent components

Why Microservices?

e Scalability: Each component can scale independently MONOLITHIC MICROSERVICES

e Agility: Faster feature releases and easier maintenance

SERVICE SERVICE

Challenges with Microservices:

e Managing communication between services APPLICATION

e Ensuring security, resilience, and observability
SERVICE SERVICE

A\

Challenges in Scaling Microservices :IARIA:

e Communication Complexity:
o How do services discover each other dynamically?
o What happens if one service fails?

e Operational Complexity:
o Monitoring and debugging in a distributed system.
o Managing dependencies and updates.

e Security Challenges:
o Securing traffic between services.
o Protecting sensitive data and ensuring compliance.

O

Security challenges

Communication complexity

What is a Service Mesh?

Why Service Mesh?

e Addresses day-two challenges, like securing service-to-service communication
e Asolution for managing communication, security, and observability in microservices

Eontrol Service Mesh Control Plane
Plane

Data Plane Instance

East-West Traffic ;

Instance

N

Instance

Sidecar Ly % Sidecar
Proxy SR Proxy

Sidecar
Proxy

IARIA

re F res: /\
Core Features IARTA

e Control Plane: Manages configurations and policies. JASSEA
e Data Plane: Proxies like Envoy enforce those policies.

Key Capabilities:

Protocol conversion

Secure communication (Mutual Transport Layer Security - mTLS)
Intelligent traffic routing (e.g., retries, circuit breakers).
Observability (tracing, metrics, logs)

Service Discovery

Testing (A/B testing, traffic splitting)

Load balancing

A\

IARIA
Problems solved by Service Mesh AR

e Microservices communicate between them a lot

e The communication might cause a lot of problems and challenges:
- Timeouts

- Security

- Retries

- Monitoring

A

Problems Solved by Service Mesh -IARIA

m Service C (stateful)
Service A

Service B
TCP [}

Service D (stateful)

Circuit Break

e Prevent cascading failures when service fails

service —_——
— 0
® A
service
e 8

Joyeaig

Istio

Why Focus on Istio?

One of the first and most widely adopted service mesh tools

Deep integration with Kubernetes, the leading platform for container
orchestration

e Backed by a vibrant open-source community

Istio in a Nutshell:

e Control plane manages configurations for routing, security, and
telemetry

e Data plane uses Envoy proxies to enforce policies and handle traffic

IARIA

A

Istio

https://istio.io/

Istio Architecture

e Control Plane:

- Configures and manages policies for traffic routing, security, and
observability

- Key components: Istiod, Pilot, Citadel

e Data Plane:
- Envoy sidecars handle service communication
- Deployed alongside every service instance to enforce policies

e Integration with Kubernetes:
- Leverages Kubernetes’ APIs for seamless deployment and
configuration

IARIA

Configuration Security Telemetry
|
Conirol Plane
\ ‘\
\ Configure
e Metrics
A S N g
Configure \
i

Service Pod

Data Plane

https://www.istioworkshop.io/03-servicemesh-overview/
istio-architecture/

Resilience with Istio

Key Resilience Features:

° Retries and timeouts ensure seamless communication
e Circuit breakers prevent cascading failures

Canary Deployments:

e Gradually roll out changes by splitting traffic (e.g., 90%
to version 1, 10% to version 2)

Testing Failures:

e Fault injection simulates delays or outages

. Primary
- Q0
. Canary
0%
..................... » i

Advanced Traffic Management IARIA

e Capabilities:
o Route traffic based on weights, versions, or user segments
o Automatically reroute traffic during outages
e Load Balancing Strategies:
o Algorithms like round-robin and least connections
e Real-World Example: e emmmemememmmemmmmmemmmmmmmmmmmm————

o Dynamic A/B testing for feature validation /" Gateway Virtual Destination ‘
Service Rule

—

T 1

I -

[g

\ 1 0 R
Q—(=l— A\ =2
o
Client Load Balancer Gateway MyApplication MyApplic-&f_ién
' Proxy Sidecar Service

https://www.solo.io/topics/istio/istio-architecture > P

--

Security with Istio IARIA

Secure Communication:

e Mutual TLS encrypts and authenticates service communication.

Policy Enforcement:
e Define rules for which services can communicate and under what conditions.

Automation:

e Automates certificate issuance and rotation for mTLS.

Mutual TLS:

- Permissive Mode
- Secure Naming

Yes
(External Deny)

Y Yes
(Explicit Deny)

DENY the request

evaluated to Deny?

Are there any | o
CUSTOM policy

g —

Request to the
workload
7

h 4

Are there CUSTOM
policy applied?

" >,

~

-

No
(Deny by default)

No g No
~ N ~ v N
Are there any DENY Yes Areih St
policy matched with ¢ re. ere h
the request? policy applied?
- & 4
N
No > <

Are there any ALLOW Yes

https://istio.io/latest/docs/concepts/security/

policy matched with

the request?

Yes
(Explicit Allow) >I

v

Are there ALLOW
policy applied?

No

v

ALLOW ‘

the request

Observability with Istio

Tracing:
o Open Telemetry agents and tools like, Jaeger or Zipkin visualize request flows
across services
Metrics:
o Prometheus collects and aggregates performance data
Logs:
o Centralized logs for debugging and audits
Use Case:
o Debugging a cascading failure using distributed tracing and real-time metrics

IARIA

Challenges in Service Mesh Adoption EARIA)

Resource Overhead: Envoy sidecars consume CPU and memory

Configuration Complexity: Managing YAML files at scale can be daunting
Auxiliary Infrastructure: Tools like Kiali and Grafana add to the operational burden
Need strong theoretical and practical knowledge before implementing

Increase operational complexity

ML-DRIVEN SERVICE MESH TRAFFIC FLOW ARCHITECTURE

Decision Decision Engine

Engine } k .
Rule Engine Confidence Scoring

Fallback Mehanisms Anomaly Detection

Control Plane 1
Control Plane

ML Model
Architecture

Traffic Prediction

$

Congestion V. .

<—_—_

IARIA

@
—

Predictive Traffic
Management

a

Anomaly Detection

Detection Instance |Pu—E =
I
i D
Anicmaly Detection Data Plane Intelligeht Routing

Data Collection Layer

Data Collection

Layer Metrics Feature Data
Harvestina Enagineerina Pipeline

Conclusion and Q&A

Takeaways:

e Service mesh simplifies managing microservices
e |[stio provides resilience, security, and observability
e Emerging trends like ambient mesh promise even greater efficiency

References

https://istio.io

https://istio.io/latest/docs/concepts/security/

https://istio.io
https://istio.io/latest/docs/concepts/security/

