
Optimizing Microservices:
Resilient Architectures for

Modern Workloads
Leveraging modern tools and techniques to build

fault-tolerant, secure, and observable systems

SOFTENG 2025

NICE FRANCE

Anuj Tyagi
Sr SRE - RingCentral Inc
anujtyagi.inbox@gmail.com
https://about.me/anujtyagi

https://about.me/anujtyagi

whoami
🛠 Sr. SRE @ RingCentral Inc

☁ AWS Community Builder

🤝 Mentor – SRE/DevOps Careers

🧩 Open-Source Contributor

🎓 MS, Northeastern Univ. Boston

Evolution of Software Architectures
From Monoliths to Microservices:

● Traditional monolithic applications bundled all features together
● Microservices break applications into smaller, independent components

Why Microservices?

● Scalability: Each component can scale independently
● Agility: Faster feature releases and easier maintenance

Challenges with Microservices:

● Managing communication between services
● Ensuring security, resilience, and observability

Challenges in Scaling Microservices

● Communication Complexity:
○ How do services discover each other dynamically?
○ What happens if one service fails?

● Operational Complexity:
○ Monitoring and debugging in a distributed system.
○ Managing dependencies and updates.

● Security Challenges:
○ Securing traffic between services.
○ Protecting sensitive data and ensuring compliance.

https://www.neoito.com/blog/startup-challenges-when-scaling-a-business/

What is a Service Mesh?
Why Service Mesh?

● Addresses day-two challenges, like securing service-to-service communication
● A solution for managing communication, security, and observability in microservices

Core Features:

● Control Plane: Manages configurations and policies.
● Data Plane: Proxies like Envoy enforce those policies.

Key Capabilities:

● Protocol conversion
● Secure communication (Mutual Transport Layer Security - mTLS)
● Intelligent traffic routing (e.g., retries, circuit breakers).
● Observability (tracing, metrics, logs)
● Service Discovery
● Testing (A/B testing, traffic splitting)
● Load balancing

Problems solved by Service Mesh

● Microservices communicate between them a lot
● The communication might cause a lot of problems and challenges:
- Timeouts
- Security
- Retries
- Monitoring

Problems Solved by Service Mesh

 Service C (stateful)

 Service A

 Service B

 Service D (stateful)

timeout

TCP

Circuit Break

● Prevent cascading failures when service fails

service

service

C
ircuit

B
reaker

Istio
Why Focus on Istio?

● One of the first and most widely adopted service mesh tools
● Deep integration with Kubernetes, the leading platform for container

orchestration
● Backed by a vibrant open-source community

Istio in a Nutshell:

● Control plane manages configurations for routing, security, and
telemetry

● Data plane uses Envoy proxies to enforce policies and handle traffic
https://istio.io/

Istio Architecture
● Control Plane:
- Configures and manages policies for traffic routing, security, and

observability
- Key components: Istiod, Pilot, Citadel

● Data Plane:
- Envoy sidecars handle service communication
- Deployed alongside every service instance to enforce policies

● Integration with Kubernetes:
- Leverages Kubernetes’ APIs for seamless deployment and

configuration

https://www.istioworkshop.io/03-servicemesh-overview/
istio-architecture/

Resilience with Istio
Key Resilience Features:

● Retries and timeouts ensure seamless communication
● Circuit breakers prevent cascading failures

Canary Deployments:

● Gradually roll out changes by splitting traffic (e.g., 90%
to version 1, 10% to version 2)

Testing Failures:

● Fault injection simulates delays or outages

Advanced Traffic Management

● Capabilities:
○ Route traffic based on weights, versions, or user segments
○ Automatically reroute traffic during outages

● Load Balancing Strategies:
○ Algorithms like round-robin and least connections

● Real-World Example:
○ Dynamic A/B testing for feature validation

https://www.solo.io/topics/istio/istio-architecture

Security with Istio

Secure Communication:
● Mutual TLS encrypts and authenticates service communication.

Policy Enforcement:
● Define rules for which services can communicate and under what conditions.

Automation:
● Automates certificate issuance and rotation for mTLS.

Mutual TLS:
- Permissive Mode
- Secure Naming

https://istio.io/latest/docs/concepts/security/

Observability with Istio
● Tracing:

○ Open Telemetry agents and tools like, Jaeger or Zipkin visualize request flows
across services

● Metrics:
○ Prometheus collects and aggregates performance data

● Logs:
○ Centralized logs for debugging and audits

● Use Case:
○ Debugging a cascading failure using distributed tracing and real-time metrics

Challenges in Service Mesh Adoption

● Resource Overhead: Envoy sidecars consume CPU and memory

● Configuration Complexity: Managing YAML files at scale can be daunting

● Auxiliary Infrastructure: Tools like Kiali and Grafana add to the operational burden

● Need strong theoretical and practical knowledge before implementing

● Increase operational complexity

Conclusion and Q&A

Takeaways:

● Service mesh simplifies managing microservices
● Istio provides resilience, security, and observability
● Emerging trends like ambient mesh promise even greater efficiency

References

https://istio.io

https://istio.io/latest/docs/concepts/security/

https://istio.io
https://istio.io/latest/docs/concepts/security/

